Search results

Search for "interface energy" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Density functional theory study of Au-fcc/Ge and Au-hcp/Ge interfaces

  • Olga Sikora,
  • Małgorzata Sternik,
  • Benedykt R. Jany,
  • Franciszek Krok,
  • Przemysław Piekarz and
  • Andrzej M. Oleś

Beilstein J. Nanotechnol. 2023, 14, 1093–1105, doi:10.3762/bjnano.14.90

Graphical Abstract
  • . Our DFT calculations for the Au-fcc(011)/Ge(001) junction show how the presence of defects in the interface layer can help to stabilize the atomic pattern, consistent with microscopic images. Although the Au-hcp/Ge interface is characterized by a similar interface energy, it reveals large atomic
  • structure; hexagonal gold; interface energy; Introduction Heterophase interfaces are responsible for unique properties of many advanced devices designed for electronics and other applications [1]. Understanding the formation and energetics of interfaces is highly important for the nucleation of new
  • gray layers between the two phases and calculated the interface energy values. As could be expected, the value of the Au-fcc/Au-hcp interface energy is much smaller (by an order of magnitude) than those of the other interfaces. The work of separation includes also the surface energy and is of the same
PDF
Album
Full Research Paper
Published 15 Nov 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • substrate at higher temperatures in oxygen-deficient environment [3][4]. Another cost-effective nanofabrication method, thin film dewetting, driven by the reduction of the surface energy and the interface energy has also been profusely studied because it provides a straightforward and fast way to produce
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • ) and L1 (L2) are the width (radius) and length of rectangular (column) shape nucleus. δ1(δ2) and () are the nucleus vapor interface energy and nucleus–liquid interface energy for rectangular (column) shaped nucleus, respectively. Optimizing Equation 1 and Equation 2, the critical radius of these two
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • be formed around the NPs and AFM tip according to Asay [32]. The form a liquid condensate takes around the tip–substrate contact area depends on the spreading coeffiecient of the system. The spreading coefficient between solid–liquid–air interfaces is given by where γS is the interface energy of the
  • bare solid, γSL is the interface energy between solid and liquid and γLV is the interface energy between liquid and vapour. This parameter shows the surface energy per unit area between the tip–liquid and substrate–liquid contacts. In the presence of humidity, Fadh is the sum of the direct adhesion Fss
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • longer annealing times and different temperatures were not further elaborated within this study, our conjecture is corroborated by pertinent results for C60-fullerenes on Au(111) [14][17][19][20][21]. The above results show that the monolayer growth and the minimization of the interface energy lead to a
PDF
Album
Full Research Paper
Published 23 May 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • films including, but not limited to, separation processes, biomedical devices, and micro/nano electronic and energy storage devices. Micro-trenches with polymer coatings by a) solution with low substrat–interface energy, b) solution with high substrate–interface energy and c) iCVD (scale bar 2 µm). a
PDF
Album
Review
Published 28 Mar 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • in a nitrogen environment and a continuous film formation due to wetting when annealed in an oxygen environment. The wetting phenomena of nanoparticles on a substrate surface is a consequence of the negative interface energy between the particles and the substrate. This was reported on by Yang et al
  • environment may also produce SiO2 at the silicon–copper surface that may affect the interface energy, but as the Cu particles are spread all over the surface, the oxygen exposure of the Si surface is reduced. Again, when the copper film is oxidized to form CuO, the film thickness is increased; such a
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

  • Nina J. Blumenstein,
  • Caroline G. Hofmeister,
  • Peter Lindemann,
  • Cheng Huang,
  • Johannes Baier,
  • Andreas Leineweber,
  • Stefan Walheim,
  • Christof Wöll,
  • Thomas Schimmel and
  • Joachim Bill

Beilstein J. Nanotechnol. 2016, 7, 102–110, doi:10.3762/bjnano.7.12

Graphical Abstract
  • 20 cycle sample. This Volmer–Weber-like growth [41] indicates that the surface energy of Si is smaller than the interface energy between ZnO and SiOx plus the surface energy of ZnO. In the case of the PS template, the growth of a homogeneous film is favored (Figure 5). A representative cross section
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2016

Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

  • Jacques Perrin Toinin,
  • Alain Portavoce,
  • Khalid Hoummada,
  • Michaël Texier,
  • Maxime Bertoglio,
  • Sandrine Bernardini,
  • Marco Abbarchi and
  • Lee Chow

Beilstein J. Nanotechnol. 2015, 6, 336–342, doi:10.3762/bjnano.6.32

Graphical Abstract
  • ). This phenomenon can be explained considering that these crystallites result from the Ge dewetting mechanism occurring on the buried SiO2 layer already observed in Figure 3.3. The general dewetting phenomenon is due to surface/interface energy minimization between the film and the substrate, leading to
PDF
Album
Full Research Paper
Published 30 Jan 2015

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

  • Daniel Gandyra,
  • Stefan Walheim,
  • Stanislav Gorb,
  • Wilhelm Barthlott and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 11–18, doi:10.3762/bjnano.6.2

Graphical Abstract
  • is required, which consists of the surface energy of the meniscus plus the interface energy of the tip–water contact area minus the surface energy of the original flat air–water interface before formation of the capillary contact. Here, σ = 0.07275 N/m [25] is the surface tension of the liquid (here
PDF
Album
Video
Full Research Paper
Published 02 Jan 2015

Synthesis of embedded Au nanostructures by ion irradiation: influence of ion induced viscous flow and sputtering

  • Udai B. Singh,
  • D. C. Agarwal,
  • S. A. Khan,
  • S. Mohapatra,
  • H. Amekura,
  • D. P. Datta,
  • Ajay Kumar,
  • R. K. Choudhury,
  • T. K. Chan,
  • Thomas Osipowicz and
  • D. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 105–110, doi:10.3762/bjnano.5.10

Graphical Abstract
  • embedding of NPs result from the different surface energies, i.e., the surface energy of the particle and its substrate, and the particle–substrate interface energy. It is reported that surface energy of embedded NPs is less than the surface energy of both glass and NPs [23]. The ion bombardment provides
PDF
Album
Full Research Paper
Published 29 Jan 2014

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

  • Alex Henning,
  • Gino Günzburger,
  • Res Jöhr,
  • Yossi Rosenwaks,
  • Biljana Bozic-Weber,
  • Catherine E. Housecroft,
  • Edwin C. Constable,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2013, 4, 418–428, doi:10.3762/bjnano.4.49

Graphical Abstract
  • offset at the heterojunction allows an estimation of the energy barrier. Depending on the front electrode material, this energy barrier varies and consequently the interface contact resistance differs. As a result, the FF of the DSC can be increased with a lower interface energy barrier and a narrower
PDF
Album
Full Research Paper
Published 01 Jul 2013

Ordered arrays of nanoporous gold nanoparticles

  • Dong Wang,
  • Ran Ji,
  • Arne Albrecht and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2012, 3, 651–657, doi:10.3762/bjnano.3.74

Graphical Abstract
  • to fabricate nanoparticles [14][15]. The dewetting of metal films is driven by reducing the surface energy of the film and the interface energy between the film and the substrate, and occurs by diffusion even well below the melting temperature of the film [15]. In addition, alloy nanoparticles can be
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2012

Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

  • Johan Pohl,
  • Christian Stahl and
  • Karsten Albe

Beilstein J. Nanotechnol. 2012, 3, 1–11, doi:10.3762/bjnano.3.1

Graphical Abstract
  • formed (Figure 4, particle 7). When the total platinum concentration is increased by another 2 atom % from 44 to 46 atom % the platinum surface concentration is lowered even more while the two-phase equilibrium inside the particle takes a core–shell shape. This is consistent with a small interface energy
PDF
Album
Full Research Paper
Published 02 Jan 2012

Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

  • Dong Wang,
  • Ran Ji and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2011, 2, 318–326, doi:10.3762/bjnano.2.37

Graphical Abstract
  • on the dewetting process of thin metal films on an inert substrate. Dewetting of metallic films on a substrate is driven by the reduction of the surface energy of the thin film and of the interface energy between the film and substrate, and can be induced by thermal annealing [9][10][11], pulsed
PDF
Album
Video
Full Research Paper
Published 22 Jun 2011

Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

  • Armin Kleibert,
  • Wolfgang Rosellen,
  • Mathias Getzlaff and
  • Joachim Bansmann

Beilstein J. Nanotechnol. 2011, 2, 47–56, doi:10.3762/bjnano.2.6

Graphical Abstract
  • the interface is size-dependent and increases with decreasing particle size and may even dominate over intrinsically size-dependent properties. Second, kinetic energy and interface energy are released upon landing on the surface. The resulting heat may rapidly anneal the particles before the thermal
  • which form upon deposition. The final state of the supported particles depends on their size and the available kinetic and interface energy. Once the energy is dissipated the particles remain trapped in their respective state until further relaxation processes are activated at the present sample
PDF
Album
Full Research Paper
Published 21 Jan 2011
Other Beilstein-Institut Open Science Activities