Search results

Search for "ionization potentials" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • , the total density of states along with effective densities in conduction and valence band, electron affinity, and ionization potentials. In addition, the optical behavior of monolayer Ge2Se2 has been discussed through exhaustive calculations of the material’s absorption coefficient, dielectric
PDF
Album
Full Research Paper
Published 11 Sep 2024

Can neutral clusters: a two-step G0W0 and DFT benchmark

  • Sunila Bakhsh,
  • Sameen Aslam,
  • Muhammad Khalid,
  • Muhammad Sohail,
  • Sundas Zafar,
  • Sumayya Abdul Wadood,
  • Kareem Morsy and
  • Muhammad Aamir Iqbal

Beilstein J. Nanotechnol. 2024, 15, 1010–1016, doi:10.3762/bjnano.15.82

Graphical Abstract
  • geometries, electron affinities, and ionization potentials reported in the benchmark. The ground-state structure geometry and binding energy were obtained from the DFT for the ground-state structure of each cluster. The binding energy of the neutral clusters of the calcium series follows an increasing trend
  • , except for a few stable even and odd clusters. The electronic properties of the calcium cluster were studied with an all-electron FHI-aims code. In the G0W0 calculation, the magic cluster Ca10 has relatively high ionization potential and low electron affinity. The obtained ionization potentials from the
  • G0W0@PBE calculation showed that the larger cluster has less variation, whereas the electron affinities of the series have an increasing trend. The ionization potentials from the G0W0 benchmark for the calcium cluster series have not yet been described in the literature. Keywords: calcium clusters
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г0(1) benchmark

  • Sunila Bakhsh,
  • Muhammad Khalid,
  • Sameen Aslam,
  • Muhammad Sohail,
  • Muhammad Aamir Iqbal,
  • Mujtaba Ikram and
  • Kareem Morsy

Beilstein J. Nanotechnol. 2024, 15, 310–316, doi:10.3762/bjnano.15.28

Graphical Abstract
  • functional theory (DFT) calculations at different levels of theory to study the transition states (vdW to semiconductor-like states) in Zn clusters. In addition, the approaches used to study the electronic properties, such as ionization potentials (IPs) of zinc, are based on the ∆-SCF methods; for some
  • presented, and binding energies are discussed. In addition, we have also explored the ionization potentials, electron affinities, and energy gaps for the series of Zn clusters. Geometrical structures Various theoretical studies have been performed regarding the structural properties of Zn clusters. Among
  • ground states for the size range n = 2–15 compared with experimental [30][31] and theoretical works [1][6][27][32]. Ionization potentials of Zn clusters for the size range n = 2–15. Comparison of our work G0W0@PBE with PW91 [7], ∆SCF [33], and LDA [32]. Comparison of Egap of neutral Zn clusters (n = 2–15
PDF
Album
Full Research Paper
Published 15 Mar 2024

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • efficiency than rutile [14][31], while the highest photocatalytic activity has been found in mixed anatase/rutile TiO2 [13][32]. One possible explanation is that the difference in the crystal structure and chemical bonding results in different ionization potentials and electron affinities. Exploiting these
PDF
Album
Full Research Paper
Published 22 May 2023

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • cylindrical electrostatic analyzer. In the present measurements, electrons pass through an analyzer at the fixed predefined energy, while the potential of the analyzer is varied with respect to the target chamber. An energy calibration was carried out by measuring known argon and xenon ionization potentials
PDF
Album
Full Research Paper
Published 01 Feb 2018

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • ionization potential of the lead has the smallest value (7.416 eV) among all considered heavy metals (the ionization potentials of mercury and cadmium are 10.437 eV and 8.99 eV, respectively). Higher electron affinity indicates that an atom more easily accepts electrons (transfer of high-energy π-electrons
PDF
Album
Full Research Paper
Published 22 Nov 2016

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • passivation was found to slightly change the optical gaps of silicon QDs, but to substantially decrease their ionization potentials and electron affinities and to affect their excited state properties. Nevertheless, there is still ample space for the modeling of the interaction of functionalized nanocrystals
PDF
Album
Review
Published 16 Oct 2014

Constant chemical potential approach for quantum chemical calculations in electrocatalysis

  • Wolfgang B. Schneider and
  • Alexander A. Auer

Beilstein J. Nanotechnol. 2014, 5, 668–676, doi:10.3762/bjnano.5.79

Graphical Abstract
  • presented here is a Grand Canonical Ensemble DFT approach that relies on a proper response of the system with respect to change in the number of electrons. It can be argued that typical functionals might not be well suited for this purpose. In molecular systems, for example, ionization potentials and
PDF
Album
Full Research Paper
Published 20 May 2014

Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

  • Mikkel Strange and
  • Kristian S. Thygesen

Beilstein J. Nanotechnol. 2011, 2, 746–754, doi:10.3762/bjnano.2.82

Graphical Abstract
  • and length dependence. The Hartree–Fock QP corrections are all positive showing that HF places the occupied levels lower than predicted by GW. This is in contrast to the corrections to the DFT levels, which are all negative, in agreement with the well-known underestimation of ionization potentials as
PDF
Album
Full Research Paper
Published 09 Nov 2011
Other Beilstein-Institut Open Science Activities