Search results

Search for "lipoproteins" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • NPs, pathogens, and oxidized lipoproteins [27][28]. These SRs function also as PRRs identifying both endogenous (e.g., damaged cells) and exogenous molecules (e.g., pathogens), activating intracellular signal transduction, and maintaining hepatic homeostatic functions [29]. Notably, SR-A1, expressed
PDF
Album
Review
Published 31 Jan 2025

Attempts to preserve and visualize protein corona on the surface of biological nanoparticles in blood serum using photomodification

  • Julia E. Poletaeva,
  • Anastasiya V. Tupitsyna,
  • Alina E. Grigor’eva,
  • Ilya S. Dovydenko and
  • Elena I. Ryabchikova

Beilstein J. Nanotechnol. 2024, 15, 1654–1666, doi:10.3762/bjnano.15.130

Graphical Abstract
  • results showed that a protein corona is present on extracellular vesicles and lipoproteins isolated by UC. The isolation of bio-NPs through sucrose gradient or cushion did not preserve the protein corona. At the same time, we observed signs of a negative effect of the sucrose gradient on bio-NPs of intact
  • obtained direct images of a “natural” protein corona on natural bio-NPs of blood serum for the first time Keywords: chylomicrons; extracellular vesicles; lipoproteins; photomodification; protein corona; Introduction The existence of a protein corona on all nanoparticles (NPs) entering biological fluids
  • that, in addition to EVs, other “natural” NPs are present in the blood, namely, lipoproteins (LPs), which are not vesicles. The content of LPs in blood is incomparably higher than that of EVs [5][16]. Previously, we detected LPs using transmission electron microscopy (TEM) in various biological fluids
PDF
Album
Full Research Paper
Published 30 Dec 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • (Kupffer cells, i.e., the liver macrophages, liver sinusoidal endothelial cells (LSEC), and hepatocytes) in NP uptake [81]. A very recent study points to the importance of interactions between PEG-NPs with (apo)lipoproteins and scavenger receptors, and postulates that the high presence of these receptors
PDF
Album
Perspective
Published 12 Aug 2024

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • inhibit DNA synthesis in bacteria, and similar effects are also seen on RNA and protein syntheses [44][45]. In addition, glutaraldehyde particularly acts on the outer layers of E. coli and cross-links lipoproteins and proteins there as well. This fixation of bacteria prevents the bacterial cells from
PDF
Album
Full Research Paper
Published 24 Jan 2022

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • polysaccharides; ii) Gram-positive bacteria contain many layers of peptidoglycan and teichoic acid (20–50 nm); and iii) Gram-negative bacteria present a few layers of peptidoglycan surrounded by a second lipid membrane containing lipopolysaccharides and lipoproteins [156][157]. Therefore, the cell wall damage
PDF
Album
Review
Published 25 Sep 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • R8 uptake [74]. Scavenger receptors are a family of cell surface glycoproteins first recognized to bind modified low-density lipoproteins (LDL) such as acetylated and oxidized LDLs. These receptors have been reported to mediate the translocation of negatively charged CPP/cargo complexes through
PDF
Album
Review
Published 09 Jan 2020

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • contrast agents including gold nanoparticles (AuNPs) [13], bromine [14], platinum [15], ytterbium [16], gadolinium [4], and tungsten [15]. Many of the systems are made up of a core that is coated with a polymeric material such as liposomes [17], micelles [13], lipoproteins or polymeric nanoparticles [18
PDF
Album
Full Research Paper
Published 07 Oct 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • function in the body (Figure 6). A substantial part of the coronas consist of apolipoproteins. They are important components of lipoproteins that facilitate the transport of cholesterol, triglycerides, and phospholipids between plasma and cells [29]. Due to their lipid-binding domains, they are even more
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

  • Jennifer Y. Kasper,
  • Lisa Feiden,
  • Maria I. Hermanns,
  • Christoph Bantz,
  • Michael Maskos,
  • Ronald E. Unger and
  • C. James Kirkpatrick

Beilstein J. Nanotechnol. 2015, 6, 517–528, doi:10.3762/bjnano.6.54

Graphical Abstract
  • dispersing the freeze-dried surfactant mixture is not suitable to achieve solvation of the lipoproteins on the molecular level; even colloidally stabilized lipid/protein agglomerates are not reached. Furthermore, the study of the agglomeration behavior of silica nanoparticles in the presence of proteins is
PDF
Album
Full Research Paper
Published 20 Feb 2015

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • intravenous injection mostly by liver and spleen macrophages and is retained there for more than two weeks [26]. In contrast to other cells, macrophages express scavenger receptor A on their surface, which mediates endocytosis of diverse ligands including modified low density lipoproteins and which has been
PDF
Album
Review
Published 15 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • corona increases the complexity even more. Figure 18 shows a comparison of the composition of the protein corona for isotropic Fe3O4@SiO2 and MnO@SiO2 as well as anisotropic Au@MnO@SiO2 Janus particles. As was observed for pure SiO2 nanoparticles [114], a significant enrichment of lipoproteins and
  • proteins involved in coagulation as compared to plasma was measured. The amphiphilic Janus character is reflected in the specific protein adsorption pattern. It shows a distinct enrichment of lipoproteins and other plasma components to the isotropic analogues confirming the observation of preferentially
PDF
Album
Review
Published 05 Dec 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • was determined by staining intracytoplasmic lipids and lipoproteins in the vacuoles of cells using oil red O (Sigma-Aldrich) or Bodipy493/503. Briefly, after 14 d of incubation, the cells were washed twice with PBS, fixed with 10% formaldehyde for 10 min and then stained with oil red O solution or
PDF
Album
Full Research Paper
Published 10 Nov 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • processing of these particles are not clarified in detail. Similar to lipoproteins, intravenously injected QDs– or SPIOs–lipid micelles reach the systemic circulation and are immediately converted by the hydrolytic activity of the enzyme called lipoprotein lipase [22][23], which is located at the luminal
  • nanocrystals and fluorescent lipid tracers Lipids derived from isolated human lipoproteins were extracted by the method of Folch. A detailed method for the labelling of triglyceride-rich lipoproteins (TRL) with nanocrystals was described recently [18]. Briefly, for embedding 10 mg of the lipid extract was
PDF
Album
Full Research Paper
Published 02 Sep 2014

Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

  • Pauline Maffre,
  • Karin Nienhaus,
  • Faheem Amin,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2011, 2, 374–383, doi:10.3762/bjnano.2.43

Graphical Abstract
  • binding a large number of lipid and cholesterol molecules to form water-soluble lipoproteins, and they direct the lipids to their correct destinations in the body [26][27][28]. Results and Discussion Protein equilibrium binding to FePt NPs For studying the interaction of serum proteins with NPs by 2fFCS
PDF
Album
Full Research Paper
Published 12 Jul 2011
Other Beilstein-Institut Open Science Activities