Search results

Search for "liquefied petroleum gas (LPG)" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • , Udayana University 80231 Badung, Bali, Indonesia 10.3762/bjnano.16.45 Abstract Flame synthesis using liquefied petroleum gas (LPG) as the precursor gas to produce carbon nanofibers (CNFs) is an economical alternative to conventional chemical vapor deposition methods using single-component fuels such as
  • synthesis; liquefied petroleum gas (LPG); nanomaterial synthesis; Introduction Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have gained significant interest because of their distinctive properties and their wide range of applications in nanotechnology [1][2][3]. CNTs are a modified version of CNFs
  • graphene sheath. These nanofibers can have three different structural configurations including herringbone, tubular, and platelet configurations [4][5]. A premixed flame of liquefied petroleum gas (LPG) can be used as a fuel source for carbon nanomaterial growth processes. A premixed flame is a specific
PDF
Album
Full Research Paper
Published 23 Apr 2025

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • stronger regulating effect on the piezoelectric filtration of free carriers. A ZnO-based self-powered gas sensor (SPGS) can be used to detect H2S, NH3 [96][97], ethanol [91][98][99][100], CO2 [101][102] and other gases [103][104][105]. A ZnSnO3/ZnO NW-based PENG was used to detect liquefied petroleum gas
  • (LPG) with high sensitivity, selectivity, and reliability [21]. The sensitivity of ZnSnO3/ZnO (1 h) NWs in 4000 ppm H2S, H2, ethanol, methanol, LPG, and saturated water vapor was measured. The sensitivity of ZnSnO3/ZnO NW for LPG is much higher than for other gases, as shown in Figure 5g
PDF
Album
Review
Published 08 Jul 2021

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • ][14]. Among them, iron oxide is a semiconductor that has been used in many gas sensing applications because of its low cost and simple preparation [14][15]. This oxide has been used in the detection of acetone, H2S, several alcohols, CO, acetic acid and liquefied petroleum gas (LPG) [16] and forming
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019
Other Beilstein-Institut Open Science Activities