Search results

Search for "multifrequency atomic force microscopy (AFM)" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Enhancing higher-order modal response in multifrequency atomic force microscopy with a coupled cantilever system

  • Wendong Sun,
  • Jianqiang Qian,
  • Yingzi Li,
  • Yanan Chen,
  • Zhipeng Dou,
  • Rui Lin,
  • Peng Cheng,
  • Xiaodong Gao,
  • Quan Yuan and
  • Yifan Hu

Beilstein J. Nanotechnol. 2024, 15, 694–703, doi:10.3762/bjnano.15.57

Graphical Abstract
  • , Chinese Academy of Sciences, Dalian 116023, P. R. China 10.3762/bjnano.15.57 Abstract Multifrequency atomic force microscopy (AFM) utilizes the multimode operation of cantilevers to achieve rapid high-resolution imaging and extract multiple properties. However, the higher-order modal response of
  • ; Introduction Multifrequency atomic force microscopy (AFM) has become an important tool for nanoscale imaging and characterization [1][2]. This technique involves the excitation and detection of multiple frequencies to improve data acquisition speed, sensitivity, and resolution, as well as to enable material
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2024

Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert,
  • Michael R. P. Ragazzon and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2018, 9, 490–498, doi:10.3762/bjnano.9.47

Graphical Abstract
PDF
Album
Full Research Paper
Published 08 Feb 2018

Correction to "Energy dissipation in multifrequency atomic force microscopy"

  • Valentina Pukhova,
  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2014, 5, 667–667, doi:10.3762/bjnano.5.78

Graphical Abstract
  • /bjnano.5.78 Keywords: band excitation; multifrequency atomic force microscopy (AFM); phase reference; wavelet transforms; In the section "Energy dissipation" of the above manuscript, there is a typesetting error in the mathematical expressions after Equation 5. The correct form must be: The energy
PDF
Original
Article
Correction
Published 20 May 2014

Energy dissipation in multifrequency atomic force microscopy

  • Valentina Pukhova,
  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2014, 5, 494–500, doi:10.3762/bjnano.5.57

Graphical Abstract
  • evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction. Keywords: band excitation; multifrequency atomic force microscopy (AFM); phase reference
PDF
Album
Correction
Full Research Paper
Published 17 Apr 2014

Challenges and complexities of multifrequency atomic force microscopy in liquid environments

  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 298–307, doi:10.3762/bjnano.5.33

Graphical Abstract
  • context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and
  • : amplitude-modulation; bimodal; frequency-modulation; liquids; multifrequency atomic force microscopy; Introduction Multifrequency atomic force microscopy (AFM) refers to a family of techniques that involve simultaneous excitation of the microcantilever probe at more than one frequency [1]. The first of
PDF
Album
Full Research Paper
Published 14 Mar 2014

Interpreting motion and force for narrow-band intermodulation atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 45–56, doi:10.3762/bjnano.4.5

Graphical Abstract
PDF
Album
Full Research Paper
Published 21 Jan 2013
Other Beilstein-Institut Open Science Activities