Search results

Search for "myricetin" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • the antifibrosis compound myricetin in pro-liposome nanocarriers to improve its solubility, stability, and low oral bioavailability [57]. As illustrated in Figure 3, the surface modification of pro-liposome with ᴅ-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E-TPGS) enhanced the stability
  • and passive targeting effect of the pro-liposomal drug delivery system. The in vivo pharmacological activity of the pro-liposomes displayed a 7.2-fold increased oral bioavailability of myricetin, leading to remarkably decreased levels of ALT, AST, and the lipid peroxidation marker (MDA), while
  • . 154-155, by R. Böttger et al., “Lipid-based nanoparticle technologies for liver targeting“, pages 79-101, Copyright (2020), with permission from Elsevier. This content is not subject to CC BY 4.0. Schematic illustration of non-targeted pro-liposome myricetin nanocarriers modified with vitamin E-TPGS
PDF
Album
Review
Published 23 Aug 2024

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • also discuss coordination-assembled myricetin nanoarchitectonics [32], nanoarchitectonics for membranes with enhanced gas separation capabilities [33], nanoarchitectonics of the cathode of Li–O2 batteries [34], nanoarchitectonics in moist-electric generation [35], nanoarchitectonics for drug delivery
PDF
Album
Editorial
Published 19 Jun 2023

Correction: Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 570–571, doi:10.3762/bjnano.13.48

Graphical Abstract
  • , Beijing, P. R. China School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China 10.3762/bjnano.13.48 Keywords: antioxidant; co-assembly; glutathione; myricetin; nanoarchitectonics; Correction 1: In the abbreviation of the radical cation "ABTS+", the dot indicating
PDF
Original
Article
Correction
Published 30 Jun 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • antioxidative reagents is an important strategy to alleviate chronic diseases and maintain the redox balance in cells. Small-molecule bioactive compounds have exhibited huge therapeutic potential as antioxidants and anti-inflammatory agents. Myricetin (Myr), a well-known natural flavonoid, has drawn wide
  • offers a new design to harness stable, sustainable antioxidant nanoparticles with high loading capacity, high bioavailability, and good biocompatibility as antioxidants. Keywords: antioxidant; co-assembly; glutathione; myricetin; nanoarchitectonics; Introduction Oxidative stress, caused by an imbalance
  • ]. However, low loading efficiency, systemic toxicity, and tedious preparation processes hinder biomedical applications. Myricetin (Myr), a well-known natural flavonoid, has drawn wide attention because of its high antioxidant, anti-inflammatory, antimicrobial, and anticancer efficacy [16]. Myr is capable of
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022
Other Beilstein-Institut Open Science Activities