Search results

Search for "nanoporous materials" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • nitride; DFT; nanoporous materials; water; Introduction Water scarcity represents one of the greatest challenges faced by our societies because of changing climate patterns combined with growing water demand [1]. In the face of this problem, seawater desalination has gained significant attention. In
PDF
Album
Full Research Paper
Published 11 Apr 2025

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • suspension [15]. However, NPs suspensions are hard to handle, suffer from poor stability, and can hardly be reused [6]. In this perspective, major interest has been devoted to developing solid SERS platforms made of nanostructured thin films [15][16]. Among them, nanoporous materials show superior properties
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • oxide [1][2]. With the recent advancements in nanotechnology, this unique phenomenon received more attention since it can be used to generate nanoporous materials which are applicable in many areas, including drug delivery, biotechnology and sensor development. The interest in nanoporous materials
PDF
Album
Full Research Paper
Published 22 Oct 2020

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • structures One of the most highly effective methods to improve the sensitivity of sensors is the enhancement of the surface (interfacial) area for facile contact between the sensing target molecules and sensor device material. High surface area materials such as integrated structures and nanoporous materials
  • different from the band-like carrier transport modes in thicker crystals. The fabricated sensor with ultrathin organic semiconductor crystals was an efficient NH3 sensor with a detection limit on the 10 ppb level. Specific effect of molecular sensing at interfaces The high surface area nature of nanoporous
  • materials and the ultrathin aspect of monolayer crystals are advantageous for improved sensor performance. These structural features can also be regarded as interfacial nanoarchitectonics. In this section, the scientific basis for molecular sensing (recognition and discrimination) specific to interfacial
PDF
Album
Review
Published 16 Oct 2019

Nanoporous smartPearls for dermal application – Identification of optimal silica types and a scalable production process as prerequisites for marketed products

  • David Hespeler,
  • Sanaa El Nomeiri,
  • Jonas Kaltenbach and
  • Rainer H. Müller

Beilstein J. Nanotechnol. 2019, 10, 1666–1678, doi:10.3762/bjnano.10.162

Graphical Abstract
  • years [19]. Porous silica particles are commercially available, for example, from Grace, Merck Millipore and Formac [20]. They are considered nanoporous materials because their pore diameter is on the nanometer scale [21]. The silica they used had so-called "mesopores", i.e., pores with dimensions in
PDF
Album
Full Research Paper
Published 08 Aug 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • above-mentioned tunable properties in nanoporous metals. The deformation mechanism in such structures has been discussed in detail. Since nanoporous materials exhibit high surface-to-volume ratios, moving dislocations may escape crystals via the surface, which may lead to a scenario of dislocation
  • sufficiently high strains in general does promote structural coarsening in nanoporous materials [49]. The predicted coarsening of npPd upon (hydrogen-induced) deformation in our case is supported by CV measurements in the double-layer region (Figure 6). Double-layer currents from cyclic voltammograms are
PDF
Album
Full Research Paper
Published 10 Dec 2018

Bio-inspired micro-to-nanoporous polymers with tunable stiffness

  • Julia Syurik,
  • Ruth Schwaiger,
  • Prerna Sudera,
  • Stephan Weyand,
  • Siegbert Johnsen,
  • Gabriele Wiegand and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 906–914, doi:10.3762/bjnano.8.92

Graphical Abstract
  • to 254 nm for pore area fractions of 35% and 17%, respectively. A decreasing pore-wall thickness may stimulate the confinement of the polymer chains within the pore walls and lead to a reduced mobility of the macromolecules, as it was described for PMMA-based low-density nanoporous materials with
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2017

Ordered arrays of nanoporous gold nanoparticles

  • Dong Wang,
  • Ran Ji,
  • Arne Albrecht and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2012, 3, 651–657, doi:10.3762/bjnano.3.74

Graphical Abstract
  • areas of both the nanoparticles and nanoporous materials. Experimental The surface of a Si(100) wafer was structured into periodic array of pyramidal pits by using SCIL, reactive ion etching (RIE, Oxford Plasmalab 100), and KOH etching. Before application of the resist for SCIL, 200 nm of SiO2 was
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2012

Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores

  • Thomas D. Lazzara,
  • K. H. Aaron Lau,
  • Wolfgang Knoll,
  • Andreas Janshoff and
  • Claudia Steinem

Beilstein J. Nanotechnol. 2012, 3, 475–484, doi:10.3762/bjnano.3.54

Graphical Abstract
  • -assemblies can be similarly understood. Our results and experimental approach provide insight into tailoring the internal structure of multilayer LbL assemblies in nanopores towards generating multifunctional LbL films within nanoporous materials. Experimental Materials Lyophilized avidin was purchased from
PDF
Album
Supp Info
Video
Full Research Paper
Published 28 Jun 2012

Synthesis and catalytic applications of combined zeolitic/mesoporous materials

  • Jarian Vernimmen,
  • Vera Meynen and
  • Pegie Cool

Beilstein J. Nanotechnol. 2011, 2, 785–801, doi:10.3762/bjnano.2.87

Graphical Abstract
  • materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials. Keywords: catalysis; characterization; combined zeolitic/mesoporous materials; synthesis
  • ; Introduction Nanoporous materials are characterized by their relatively high surface areas and pore volumes within a small amount of material. These properties, together with the fact that they have (uniform) channels and voids in the nanometer range, make them ideal candidates for implementation in several
  • applications. In fact, nanoporous materials are used extensively in a wide variety of applications on industrial, pilot, and laboratory scale in many different research areas, such as fine and specialty chemistry [1][2][3], petrochemistry [4][5] and medicine [2][6][7][8][9][10]. They can be applied as
PDF
Album
Review
Published 30 Nov 2011

On the reticular construction concept of covalent organic frameworks

  • Binit Lukose,
  • Agnieszka Kuc,
  • Johannes Frenzel and
  • Thomas Heine

Beilstein J. Nanotechnol. 2010, 1, 60–70, doi:10.3762/bjnano.1.8

Graphical Abstract
  • ; energetic and electronic properties; layer stacking; XRD; Introduction In the past decade, considerable research efforts have been expended on nanoporous materials due to their excellent properties for many applications, such as gas storage and sieving, catalysis, selectivity, sensoring and filtration [1
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities