Search results

Search for "photonic bandgap" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates

  • Norma Salvadores Farran,
  • Limin Wang,
  • Primoz Pirih and
  • Bodo D. Wilts

Beilstein J. Nanotechnol. 2025, 16, 1–10, doi:10.3762/bjnano.16.1

Graphical Abstract
  • crystallites with different lattice orientations. The reciprocal space images and reflection spectra obtained from single domains indicated a partial photonic bandgap in the wavelength range from 450 to 650 nm. Light reflected from {111}-oriented domains is green-yellow. Light reflected from blue, {100
  • particular, three-dimensional (3D) photonic crystals are characterized by a photonic bandgap that prohibits light of certain wavelengths from propagating through (specific) orientations of the material [3]. A complete photonic bandgap, where propagation of light waves in a certain wavelength band is
  • prohibited, is generally not possible with biological photonic crystals, as the refractive index contrast (approx. 1.55) between chitin and air is too low to achieve this condition [4][5]. The intriguing properties of photonic bandgap materials extend beyond coloration, as they can be used for manipulating
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • , and spin–photon entanglement), and detection (involving single-photon detectors). Keywords: integrated photonics; lithium niobate; photonic bandgap; photonic crystal; titanium dioxide; Introduction One-dimensional photonic crystals (PhCs) are electromagnetic media in which materials are periodically
  • arranged in a certain direction. The periodicity is proportional to the wavelength of light that lies in its photonic bandgap (PBG) [1]. The presence of the PBG and the potential ability to tune its position to match specific frequencies is perhaps the most attractive quality of PhC [2]. The specific
  • in refractive index which is crucial for the creation of photonic bandgap [13]. In addition, these two materials are highly used in the photonics industry due to their easy availability and low cost. Moreover, both TiO2 and SiO2 can be integrated with various materials. The precise choice of
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

  • Rui Chen,
  • Yi Zheng,
  • Xingyu Huang,
  • Qiaoling Lin,
  • Chaochao Ye,
  • Meng Xiong,
  • Martijn Wubs,
  • Yungui Ma,
  • Minhao Pu and
  • Sanshui Xiao

Beilstein J. Nanotechnol. 2023, 14, 544–551, doi:10.3762/bjnano.14.45

Graphical Abstract
  • patterns. Here, photonic-crystal BIC cavities encircled by the photonic bandgap of lateral heterostructures are designed. The mirror-like photonic bandgap exhibits strong side leakage suppression to confine the mode profile in the designed cavity. Multiple bulk quantized modes are observed both in
  • levels, similar to the quantization of electronic states in quantum dots. Each quantized BIC mode has its specific bulk mode profile and radiation pattern. Combining a photonic bandgap perimeter with the finite-size BIC cavity could significantly prevent transverse leakage, thus giving rise to ultrahigh
  • periodic boundary conditions and the eigenfrequency solver. Bandgap mirror-assisted finite-size BIC cavity To boost the Q factor of the cavity, a lateral heterostructure with a photonic bandgap, shown as region B in Figure 2a, is introduced to surround the BIC cavity, named region A. The bandgap mirror is
PDF
Album
Full Research Paper
Published 27 Apr 2023

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • packing than spherical particles. In addition, their porous structure can accommodate guest molecules, which can further alternate the properties of the whole assembly. These features give the assembled superstructures more freedom to change their properties, such as the photonic bandgap, which has been
PDF
Album
Review
Published 12 Aug 2022

A photonic crystal material for the online detection of nonpolar hydrocarbon vapors

  • Evgenii S. Bolshakov,
  • Aleksander V. Ivanov,
  • Andrei A. Kozlov,
  • Anton S. Aksenov,
  • Elena V. Isanbaeva,
  • Sergei E. Kushnir,
  • Aleksei D. Yapryntsev,
  • Aleksander E. Baranchikov and
  • Yury A. Zolotov

Beilstein J. Nanotechnol. 2022, 13, 127–136, doi:10.3762/bjnano.13.9

Graphical Abstract
  • qualitative detection of saturated vapors of volatile organic compounds due to configuration changes of the photonic bandgap, recorded by diffuse reflectance spectroscopy. The exposure of the sensor to aromatic (benzene, toluene and p-xylene) and aliphatic (n-pentane, n-heptane, n-octane and n-decane
  • removed, then it is an inverse opal structure [11][12][13]. A photonic bandgap (PBG) appears in colloidal crystals due to the periodic modulation of the refractive index. At the bandgap, selective reflection of light is observed, which is connected to a low photon density of states within the materials
  • [14]. Most of the configuration changes of the photonic bandgap in opal and inverse opal structures occur due to swelling or compression of the polymer matrix or gel. To date, four main methods for the modification of photonic crystals are used for the creation of stimuli-responsive materials: (a
PDF
Album
Full Research Paper
Published 25 Jan 2022

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • Química, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico IDM, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain 10.3762/bjnano.10.97 Abstract A photonic bandgap (PBG) biosensor has been developed for the label-free detection
  • sites towards the target sample. Then, the biofunctionalized PBG biosensor has been used to perform a direct and real-time detection of the target BSA antigen. Keywords: evanescent field; half-antibodies; light-assisted immobilization; photonic bandgap sensor; SNOM characterization; Introduction The
  • femtomolar range for oligonucleotides detection [6]. A particular type of photonic sensing devices are photonic bandgap (PBG) biosensors based on evanescent-wave detection [7]. PBG structures consist of a periodic dielectric configuration for which the propagation of a certain wavelength range is forbidden
PDF
Album
Full Research Paper
Published 26 Apr 2019

Design of photonic microcavities in hexagonal boron nitride

  • Sejeong Kim,
  • Milos Toth and
  • Igor Aharonovich

Beilstein J. Nanotechnol. 2018, 9, 102–108, doi:10.3762/bjnano.9.12

Graphical Abstract
  • full photonic bandgap between the first and the second lowest photonic energy bands even when the effective index contrast is low [31]. The combination of a high Q-factor and a low refractive index enables a broad range of applications such as flexible photonic crystal devices and high figure of merit
PDF
Album
Letter
Published 09 Jan 2018

Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

  • Agata Siarkowska,
  • Miłosz Chychłowski,
  • Daniel Budaszewski,
  • Bartłomiej Jankiewicz,
  • Bartosz Bartosewicz and
  • Tomasz R. Woliński

Beilstein J. Nanotechnol. 2017, 8, 2790–2801, doi:10.3762/bjnano.8.278

Graphical Abstract
  • PLCF with a Ti-doped 5CB nematic LC has been recently reported in [18], where a noticeable difference in both the orientation of the molecules and the propagation spectra of the PLCF was observed. The light was guided according to a mechanism known as the photonic bandgap (PBG) effect, in which only
PDF
Album
Full Research Paper
Published 27 Dec 2017

Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

  • Eduardo Aluicio-Sarduy,
  • Simone Callegari,
  • Diana Gisell Figueroa del Valle,
  • Andrea Desii,
  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2016, 7, 1404–1410, doi:10.3762/bjnano.7.131

Graphical Abstract
  • Figure 2, where the transmission spectrum of the photonic crystal is reported as a function of the applied voltage. The transmission is dominated by two strong bands at around 480 nm and 620 nm, ascribed to the plasmonic resonances of the silver nanoparticles and the photonic bandgap, respectively. We
  • want to emphasize the fundamentally different nature of the two resonances observed in our device, namely the plasmonic resonance of the silver nanoparticle layer and that of the photonic bandgap. The pump–probe measurement in Figure 3a shows the transmission spectra of the transient absorption
  • as given in [28] and two artificially increased carrier densities. Similar to the experimental results, the calculated transmission spectra show an intense band in the UV/blue region ascribed to the plasmon resonance of the silver layer and a second band corresponding to the photonic bandgap. Note
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2016

Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods

  • Liga Jasulaneca,
  • Raimonds Meija,
  • Alexander I. Livshits,
  • Juris Prikulis,
  • Subhajit Biswas,
  • Justin D. Holmes and
  • Donats Erts

Beilstein J. Nanotechnol. 2016, 7, 278–283, doi:10.3762/bjnano.7.25

Graphical Abstract
  • ] applications. It has also been studied as a photonic bandgap material in the visible region of the electromagnetic spectrum [12]. Synthesis and characterization of various Sb2S3 nanostructures including dendrites [13], nanorods [14], whiskers [15], nanowires (NWs) [16][17] and nanotubes [18] have been reported
PDF
Album
Full Research Paper
Published 19 Feb 2016

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • nanoparticles and the photonic bandgap of photonic crystal as the main reason for Au (556)/TiO2 NTPC to display the best photoelectrochemical performance among three different sizes of Au/TiO2 NTPC photocatalysts. There are also other groups of nanoarchitectures such as silver nanoparticle–WO3 [81], gold
PDF
Album
Review
Published 23 May 2014

Aerosol assisted fabrication of two dimensional ZnO island arrays and honeycomb patterns with identical lattice structures

  • Mitsuhiro Numata and
  • Yoshihiro Koide

Beilstein J. Nanotechnol. 2010, 1, 71–74, doi:10.3762/bjnano.1.9

Graphical Abstract
  • structure is considered advantageous in achieving the large aspect ratio necessary to observe the photonic bandgap via surface reflection measurements [9]. Figure 1 summarizes the ZnO nanocrystal array fabrication under the PSL/m-CVD procedures. First, a polystyrene beads (median diameter = 1.50 μm
PDF
Album
Letter
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities