Search results

Search for "thermal spike" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • diameter in CdO subjected to 120 MeV silver ion irradiation is calculated to be approximately 8 nm using an inelastic thermal spike simulation code. This study elucidates the intriguing reappearance of the B1 phase under oxygen ion irradiation and highlights the radiation stability of the B2 phase through
  • diverse characterization techniques, demonstrating the potential reversibility of the B1 to B2 phase transformation induced by ion irradiation. Keywords: irradiation; phase transformation; thermal spike; track diameter; X-ray absorption near edge spectroscopy; X-ray photoelectron spectroscopy
  • described through two primary models: the Coulomb explosion model, which relies on electrostatic repulsive forces [10][11], and the thermal spike model, where energy is transferred to lattice atoms, resulting in melting and subsequent quenching to form tracks [12][13]. The latter model has been more widely
PDF
Album
Full Research Paper
Published 17 Apr 2025

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • local melting (thermal spike) [29] occurs along the ion trajectory due to the energy deposition into the electronic subsystem (within 10−16 s). The local thermalization of the electronic sub-system takes place within 10−14 s. The deposited energy is transferred to the atomic subsystem by electron–phonon
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

A study on the consequence of swift heavy ion irradiation of Zn–silica nanocomposite thin films: electronic sputtering

  • Compesh Pannu,
  • Udai B. Singh,
  • Dinesh. C. Agarwal,
  • Saif A. Khan,
  • Sunil Ojha,
  • Ramesh Chandra,
  • Hiro Amekura,
  • Debdulal Kabiraj and
  • Devesh. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 1691–1698, doi:10.3762/bjnano.5.179

Graphical Abstract
  • film. The process of size-dependent electronic sputtering of Zn is explained on the basis of an inelastic thermal spike model. The possibility of direct cluster emission is explained by pressure spike built inside the track, initiated by a temperature spike. Keywords: ion irradiation; nanocomposites
  • sputtering yield [17]. Several mechanisms were proposed to describe the large sputtering yield, such as shock wave model [18], thermodynamical equilibrium model [19], ion explosion, thermal spike [20] and even a combination of ion explosion and thermal spike [21]. In the case of metals, the electronic
  • . Large sputtering yield of Zn and its dependence on the size of nanoparticles The large magnitude of sputtering yield can be explained on the basis of the inelastic thermal spike model. According to this model, a large amount of incident energy of swift heavy ions is transferred to the electrons of the
PDF
Album
Full Research Paper
Published 01 Oct 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • (ii) the surrounding zone where the matrix is not molten but the temperature is still high enough for metal nanoparticles to be in molten state. The formation of ion tracks in insulator matrices, e.g., SiO2, has been understood in terms of thermal spike and Coulomb explosion models [26][41][42]. But
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014
Other Beilstein-Institut Open Science Activities