Search results

Search for "wettability" in Full Text gives 119 result(s) in Beilstein Journal of Nanotechnology.

Multifunctional properties of bio-poly(butylene succinate) reinforced with multiwalled carbon nanotubes

  • Volodymyr Krasinskyi,
  • Krzysztof Bajer,
  • Ludmila Dulebova,
  • Nickolas Polychronopoulos,
  • Oksana Krasinska and
  • Daniel Kaczor

Beilstein J. Nanotechnol. 2025, 16, 1014–1024, doi:10.3762/bjnano.16.76

Graphical Abstract
  • and water absorption of PBS; however, it significantly influences surface wettability and tribological properties (Table 3). The dynamic and static coefficients of friction for the PBS/CNT_0.5 nanocomposite are 1.7 and 1.3–1.7 times lower, respectively, than those of the pure PBS. The surface
  • wettability of films based on the nanocomposite is 7 mN·m−1 higher than that of the original PBS (52 versus 45 mN·m−1). This indicates that PBS/CNT_0.5 films will not require additional activation before applying paints, adhesives, or coatings. The addition of CNTs also affects the density of PBS
  • %. Furthermore, the surface wettability increased by 15%, and the crystallization temperature rose by 25%, indicating an acceleration in crystallization kinetics. However, these enhancements were accompanied by a 37–50% reduction in elasticity. Despite the decrease in ductility, the elongation at break remained
PDF
Album
Full Research Paper
Published 03 Jul 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • shield the wound region from external harm and dehydration. Microstructure, mechanical characteristics, surface wettability, anti-microbial action, biodegradability, biocompatibility, and effectiveness of the bilayer wound dressing were also examined [166]. Light-activable nanostructures Biomaterials
  • determine the biocompatibility of the fibers, BMSCs were used. The results disclosed that adhesion, viability, and proliferation of the cells were enhanced by the PDA coating. The bioactivity and wettability of the coatings increased the chances of osteoblast adhesion and survival, proposing that the PDA
PDF
Album
Review
Published 24 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • nanopatterning and nanoscale functionalization have garnered significant interest, owing to their broad applications in DNA origami [10], tuning of wettability [11] and electrical and magnetic anisotropy [12][13], isolated dot formation [1], nanoscale plasmonic arrays [14], and field emission [15]. Thus, ion
PDF
Album
Full Research Paper
Published 31 Mar 2025

Biomimetics and bioinspired surfaces: from nature to theory and applications

  • Rhainer Guillermo Ferreira,
  • Thies H. Büscher,
  • Manuela Rebora,
  • Poramate Manoonpong,
  • Zhendong Dai and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2025, 16, 418–421, doi:10.3762/bjnano.16.32

Graphical Abstract
  • ; microstructures; nanostructures; wettability; The surfaces of living organisms are continuously interacting with their surroundings. As a result, they encounter a variety of challenges arising from both external and internal stimuli. Consequently, these surfaces must be multifunctional and adapt to numerous
  • surfaces with self-cleaning and wettability functionalities, as well as photonic surfaces, highlighting the broad sense and intent of the symposium for bridging biology and biomimetics in advanced materials sciences. The panel was composed of experts from all around the world resulting in the compilation
PDF
Album
Editorial
Published 26 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • systems because of their ability to form gel-like structures in the presence of divalent cations such as Ca2+. Despite the advantages of alginate polymer such as its biodegradability, biocompatibility, and gelation ability, its instability, fast wettability, and rapid release at high pH result in the
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • chitosan/PVA nanofibers using dielectric barrier discharge (DBD) plasma and reported enhanced wettability, mechanical properties, and biocompatibility of the fibers. The argon and oxygen plasma treatments led to significant cross-linking of the fibers, which improved tensile strength and Young’s modulus
  • number of adsorption sites on the surface, improve mechanical properties, enhance hydrophilicity and wettability, and stabilize nanofibers in aqueous solutions [156]. Numerous techniques have been developed to modify the surface properties of electrospun nanofibers, including surface graft polymerization
PDF
Album
Review
Published 26 Feb 2025

Preferential enrichment and extraction of laser-synthesized nanoparticles in organic phases

  • Theo Fromme,
  • Maximilian L. Spiekermann,
  • Florian Lehmann,
  • Stephan Barcikowski,
  • Thomas Seidensticker and
  • Sven Reichenberger

Beilstein J. Nanotechnol. 2025, 16, 254–263, doi:10.3762/bjnano.16.20

Graphical Abstract
  • their surface chemistry will affect the particles’ wettability or hydrophobicity, the phase transfer between two liquid phases with different polarities has not been investigated previously. We approached this issue by using thermomorphic multiphase systems (TMSs), switchable mixtures that can change
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2025

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • to use. These biomimetic surface functionalization steps were confirmed by several complimentary surface analysis techniques. The wettability of each surface was probed with water contact angle measurements, while the chemical composition of the layer was determined by X-ray photoelectron
  • force microscopy (AFM), sum frequency generation spectroscopy (SFG), and X-ray photoelectron spectroscopy (XPS). Measuring static water contact angles is a straightforward method to determine the relative wettability of a material and allows for a quick check if our surface modifications were successful
  • mussels (PDA) and, then, to test the biocompatibility of the layer. To assess our coating strategy, we used several complimentary surface analysis techniques to characterize our biomimetic surfaces. The wettability of each surface was probed with water contact angle measurements, while the chemical
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • surface interaction with gases during photocatalytic oxidative coupling can be analyzed using water contact angle analysis (as shown in Supporting Information File 1, Figure S2). The wettability of pure p-Si and the p-Si NW array are illustrated in Figure S3 (Supporting Information File 1). Pure p-Si had
  • that the superior wettability of TiO2/SiNWs (hydrophilic surfaces) compared to TiO2/glass (hydrophobic surfaces) enables partial adsorption of water molecules, which facilitates the generation of radicals necessary for photocatalytic reactions. Furthermore, the TiO2 nanostructure and p-type SiNWs are
  • spectrometer (DRS-UV, Shimazu UV-2450). The chemical structure of the catalyst surface was analyzed using a Raman spectrometer (excitation of 532 nm, ANDOR Monora 500i). The surface wettability of the thin film sample was measured using a static contact angle system (Biosin Scientific), as shown in Supporting
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • Mansoorianfar and co-workers [91]. Booth et al. [92] dealt with foreign-body giant cell formation, disproving that significant changes in wettability and surface energy affect the in vivo effects of NDs on titanium surfaces. The authors surprisingly reported a negligible effect of ND coating on fibrous
PDF
Album
Review
Published 16 Aug 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • length scales. Keywords: adhesion; fibers; fluid–structure interactions; mastigonemes; mechanosensing; setae; wettability; Introduction Given the bottom-up approach that biology uses to create materials, fibrous structures formed by molecular chains are found everywhere. For example, internally in the
  • difference of ≈10−4 °C. Therefore, thermal insulation would have a negligible effect on thermoregulation at this scale. Instead, cells may be able to regulate their metabolic rates in response to changes in environmental temperatures [38]. Wettability Superhydrophobic surfaces have the unique capability of
  • preventing water from spreading; thus, they exhibit low wettability. In order to achieve superhydrophobicity, surfaces should have structural hierarchy and be composed of materials with low surface energy. The classic example of such a surface in nature is the lotus leaf [39], which possesses wax-covered
PDF
Album
Review
Published 06 Jun 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • release from the BBR/PLA and BBR NPs/PLA nanofiber scaffolds was investigated in relation to their chemical characteristics, BBR dispersion into nanofibers, and wettability. The BBR release profiles strongly influenced the antibacterial efficiency of the scaffolds over time. When the BBR was loaded, the
  • , the BBR NPs/PLA nanofiber scaffold had more wettability and higher concentration of BBR NPs dispersed on the surface of PLA nanofibers. This led to a sustained release of 75 wt % of the loaded BBR during the first 24 h, and consequently boosted the antibacterial effectiveness. Moreover, the
  • /PLA and BBR NPs/PLA electrospun nanofiber scaffolds, the latter appeared with a darker yellow color, which is typical of the natural color of BBR (Figure 1c). Chemical characteristics and wettability of BBR-loaded PLA nanofiber scaffolds By identifying distinct vibrational modes of various chemical
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • had a rounded bottom. The space between the pillars and holes were around 860 nm and 330 nm, respectively. The wettability of a surface is a good predictor of protein adsorption and bioactivity [20]. For the extracellular matrix protein laminin, good adsorption and cell growth have been found on
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • Zoology, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany 10.3762/bjnano.14.69 Keywords: biomimetic surfaces; hydrophobicity; lotus effect; Salvinia effect; superhydrophobicity; wettability; In 1997, Wilhelm Barthlott and Christoph Neinhuis published the paper
  • pest insects by reducing the frictional forces experienced when they walk on the leaves. This structure might also provide mechanical stability to the growing plant organs and has an impact on the wettability of the leaves. Using polymer replicas of adaxial leaf surfaces at various scales, the surface
  • -coated artificial leaf surfaces with chemical composition and wettability of wheat (Triticum aestivum) leaves. Such artificial leaves are of interest for in vitro studies of interactions of plant surfaces with living organisms and the non-living environment, as demonstrated by Huth et al. [11], where the
PDF
Album
Editorial
Published 03 Aug 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • coating method to obtain light-trapping coatings of nanofibers by the copolymerization of dopamine and pyrrole, which can be directly and rapidly synthesized on a polystyrene (PS) foam at room temperature (Figure 9). Due to its excellent wettability, the coating is water permeable and can be directly
PDF
Album
Review
Published 04 Apr 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • materials based on a synthesized carbon support C-11 (samples C and D) that were related to their wettability. After transferring approximately half of the material to the electrode, the catalyst layer obtained was not evenly wetted with the fresh ink. Adding a few drops of isopropanol did not improve the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • formulation. The choice of polymer matrix effectively dictates the observed wettability and adhesion to the chosen substrate. The adhesion properties can also be explained by the innovative structure of the depth-wise gradient distribution of AgNPs in the metallic coatings. Indeed, as the AgNPs and the
PDF
Album
Full Research Paper
Published 12 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • process provides a unique artificial defect-rich surface, which supports the creation of homogeneously distributed molecular environments for functional substrates, e.g., surface wettability control [23] and enhanced biorecognition phenomenon [24][25][26]. The versatility of CLL can also be expanded by
PDF
Album
Full Research Paper
Published 04 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • wettability variations combined with a nanometric design to improve water flow [39][40]. The paper is organized as follows: In the section “Model and Simulation Details”, the model is presented and the simulation method is explained. In the “Results and Discussion” section, the simulation results are shown
  • approach, the variable that determines the wettability of the surface is the potential well defined by εr. The higher the value of εr, the more hydrophilic the surface is. Here we employed 1.5 ≥ εr ≥ 0.8. The water harvesting has been modeled according to the following mechanism: First, the vapor generated
  • wettability of the hydrophilic slab (εr = 1.1). Without that, no molecule would have been captured. In the case of the completely hydrophobic nanocone, no droplet is formed in the base of the nanocone. Only very few molecules randomly enter and are successfully harvested, but this number is negligible. In
PDF
Album
Full Research Paper
Published 02 Jan 2023

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • interaction and, thus, the design of a suitable surface structure to prevent sticking of an artificially nonwoven of nanofibers. Similar to the description of the Lotus effect [20][21][22][23], where the wettability of the hierarchical surface structure of the lotus leaf can be described with an energy
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • wettability of the chitosan/reduced graphene oxide composites with specific acetic acid and lactic acid shows water contact angles of (75.40° ± 4.32°) and (36.71° ± 4.53°) [60]. The anticancer agent cisplatin was loaded into graphene oxide/hydroxyapatite/chitosan composites to enable proliferation of
  • wettability and protein adsorption which can facilitate osteogenesis [129]. Biomaterials such as chitosan and its composites containing bioactive metals draw much attention in tissue engineering and regenerative applications. Chitosan-based composites are now being studied in wound healing, bone and cartilage
PDF
Review
Published 29 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • and lower Tafel slope (giving rise to better electrokinetics) are the main reasons for the superior ORR performance of the ACC-2 sample. In addition to the catalyst size, morphology, conductivity, and the exposure of active sites, the surface wettability of the electrocatalyst significantly governs
  • the interaction between electrolyte and the electrode surface. We probed the water wetting ability of supported ACC-2 and supportless ACC-2* by measuring the water contact angles (Figure S8a,b, Supporting Information File 1). The rGO-supported ACC-2 material showed a higher water wettability (14 ± 1
  • °) than the supportless ACC-2* (40 ± 5°). The improved wettability can enhance the charge transfer rate between the electrolyte and the electrode, along with enabling effective electrical integration to reduce ohmic losses, boosting the ORR activity of ACC-2. We observed that ACC-2 displayed superior ORR
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • composition play significant roles. Here, the ability of self-assembly of wax after isolation from the leaves was used to develop a small-scale wax-coated artificial leaf surface with the chemical composition and wettability of wheat (Triticum aestivum) leaves. By thermal evaporation of extracted plant waxes
  • and adjustment of the evaporated wax amounts, the wettability and chemical character of the microstructure of the surface of wheat leaves were transferred onto a technical surface. For the use of these artificial leaves as a test system for biotic (e.g., germination of fungal pathogens) and non-biotic
  • among the most common wax structures. An overview of the morphology of various wax structures has been given by Barthlott and co-workers [24]. Wetting The wettability of leaves plays an important role in the interaction of plants with the environment, such as the interaction with pathogens and the
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • . Introducing defects reduces the optical gap, which allows for a more effective charge transfer between ZnO–Ag nanowires and the molecules attached. Also, the interstitial oxygen defects change the wettability of ZnO–Ag nanowires, which reduces the spreading of Ag NPs or probe molecules on the surface, which
PDF
Album
Review
Published 27 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • example, to modify the surface of nanofiber polymers, plasma treatment has been used to provide them with hydroxy, carboxyl, or amine polar groups to improve physical properties such as wettability, polarity, and bioadhesion [102]. As a result, surface-modified nanofibers will more likely absorb bioactive
  • , and OH) and surface roughness to CNT, Antonioli et al. used oxygen plasma treatment and fabricated novel superhydrophilic VA–CTN films. This treatment could increase the wettability of the nanofilms to acquire appreciable cytocompatibility [134]. The chondrocytes expressed major chondrogenic markers
PDF
Album
Review
Published 11 Apr 2022
Other Beilstein-Institut Open Science Activities