Micro- and mesoporous solids: From science to application

editorImage
Editor: Prof. Jörg J. Schneider
Technische Universität Darmstadt
 
In the last two decades mesoporous materials having pore dimensions between 2 and approximately 50 nm have emerged. This group has established itself as an important class of solid-state materials with a huge and still constantly growing number of new congeners with pores on the nano- to mesoscale. These can be broadly classified into inorganic, organic and metal–organic types. Nevertheless, hybrids of these compositions have even been realized, extending the diversity in the chemical composition of such mesoporous solids further still. Besides their different chemical composition, the pore morphology, geometry and pore dimensions make these materials outstanding with respect to, e.g., catalytic reaction processes, in the area of sensorics, photonics and gas storage. In the realm of gas storage, mesoporous metal–organic frameworks (MOFs) appeared on the scene a couple of years ago and have quickly emerged as most-promising highly meso- and macroporous materials exhibiting enormous pore volumes with inner surface areas comparable with bare nanoparticles and thus coming close to the ultimate adsorption limit for solid materials.
Back to all Issues

Micro- and mesoporous solids: From science to application

  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2011, 2, 774–775, doi:10.3762/bjnano.2.85

Graphical Abstract
PDF
Album
Editorial
Published 30 Nov 2011

Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

  • Jaydeep Bhattacharya,
  • Alexandre Kisner,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2011, 2, 104–109, doi:10.3762/bjnano.2.12

Graphical Abstract
PDF
Album
Full Research Paper
Published 11 Feb 2011

Pore structure and surface area of silica SBA-15: influence of washing and scale-up

  • Jörg P. Thielemann,
  • Frank Girgsdies,
  • Robert Schlögl and
  • Christian Hess

Beilstein J. Nanotechnol. 2011, 2, 110–118, doi:10.3762/bjnano.2.13

Graphical Abstract
PDF
Album
Video
Full Research Paper
Published 16 Feb 2011

Novel acridone-modified MCM-41 type silica: Synthesis, characterization and fluorescence tuning

  • Maximilian Hemgesberg,
  • Gunder Dörr,
  • Yvonne Schmitt,
  • Andreas Seifert,
  • Zhou Zhou,
  • Robin Klupp Taylor,
  • Sarah Bay,
  • Stefan Ernst,
  • Markus Gerhards,
  • Thomas J. J. Müller and
  • Werner R. Thiel

Beilstein J. Nanotechnol. 2011, 2, 284–292, doi:10.3762/bjnano.2.33

Graphical Abstract
PDF
Album
Full Research Paper
Published 09 Jun 2011

Ceria/silicon carbide core–shell materials prepared by miniemulsion technique

  • Lars Borchardt,
  • Martin Oschatz,
  • Robert Frind,
  • Emanuel Kockrick,
  • Martin R. Lohe,
  • Christoph P. Hauser,
  • Clemens K. Weiss,
  • Katharina Landfester,
  • Bernd Büchner and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 638–644, doi:10.3762/bjnano.2.67

Graphical Abstract
PDF
Album
Video
Full Research Paper
Published 27 Sep 2011

Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol

  • Jörg J. Schneider,
  • Meike Naumann,
  • Christian Schäfer,
  • Armin Brandner,
  • Heiko J. Hofmann and
  • Peter Claus

Beilstein J. Nanotechnol. 2011, 2, 776–784, doi:10.3762/bjnano.2.86

Graphical Abstract
PDF
Album
Full Research Paper
Published 30 Nov 2011

Synthesis and catalytic applications of combined zeolitic/mesoporous materials

  • Jarian Vernimmen,
  • Vera Meynen and
  • Pegie Cool

Beilstein J. Nanotechnol. 2011, 2, 785–801, doi:10.3762/bjnano.2.87

Graphical Abstract
PDF
Album
Review
Published 30 Nov 2011

Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

  • Jin-Ming Wu,
  • Igor Djerdj,
  • Till von Graberg and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2012, 3, 123–133, doi:10.3762/bjnano.3.13

Graphical Abstract
PDF
Album
Supp Info
Video
Full Research Paper
Published 13 Feb 2012

Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control

  • Gnanaprakash Dharmalingam,
  • Nicholas A. Joy,
  • Benjamin Grisafe and
  • Michael A. Carpenter

Beilstein J. Nanotechnol. 2012, 3, 712–721, doi:10.3762/bjnano.3.81

Graphical Abstract
PDF
Album
Full Research Paper
Published 31 Oct 2012
Other Beilstein-Institut Open Science Activities