Recent applications of the divinylcyclopropane–cycloheptadiene rearrangement in organic synthesis

Sebastian Krüger and Tanja Gaich
Beilstein J. Org. Chem. 2014, 10, 163–193. https://doi.org/10.3762/bjoc.10.14

Cite the Following Article

Recent applications of the divinylcyclopropane–cycloheptadiene rearrangement in organic synthesis
Sebastian Krüger and Tanja Gaich
Beilstein J. Org. Chem. 2014, 10, 163–193. https://doi.org/10.3762/bjoc.10.14

How to Cite

Krüger, S.; Gaich, T. Beilstein J. Org. Chem. 2014, 10, 163–193. doi:10.3762/bjoc.10.14

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rasheed, F.; Nikolaev, A.; Dhesi, A.; Zeng, T.; Guo, Y. X.; Krishna, Y.; Komijani, S.; Orellana, A. Mild and catalytic electrocyclizations of heptatrienyl anions. Chemical science 2024, 15, 8163–8169. doi:10.1039/d4sc00926f
  • Bakker, M. J.; Siebert, M. R. Atomistic Details of Methyl Linoleate Pyrolysis: Direct Molecular Dynamics Simulation of Converting Biodiesel to Petroleum Products. Energies 2024, 17, 2433. doi:10.3390/en17102433
  • Huang, M.-Y.; Zhao, J.-B.; Zhang, C.-D.; Zhou, Y.-J.; Lu, Z.-S.; Zhu, S.-F. Enantioselective α-Boryl Carbene Transformations. Journal of the American Chemical Society 2024, 146, 9871–9879. doi:10.1021/jacs.3c14766
  • Wei, Y.; Wang, G.; Zhang, Z.; Li, M.; Ma, N.; Wu, H.; Zhang, G. Cope Rearrangement of 1-Acyl-2-vinylcyclopropanes to Cyclohept-4-Enones. The Journal of organic chemistry 2024, 89, 1127–1139. doi:10.1021/acs.joc.3c02319
  • Marichev, K.; Doyle, M. (3+1) and (3+3) Cycloadditions. Comprehensive Chirality; Elsevier, 2024; pp 247–265. doi:10.1016/b978-0-32-390644-9.00040-8
  • Orellana, A.; Komijani, S. The Electrocyclization of Heptatrienyl Anions. Synthesis 2023, 56, 701–713. doi:10.1055/s-0040-1720086
  • Eitzinger, A.; Ofial, A. R. Reactivity of electrophilic cyclopropanes. Pure and applied chemistry. Chimie pure et appliquee 2023, 95, 389–400. doi:10.1515/pac-2023-0209
  • Masson, K.; Dousset, M.; Biletskyi, B.; Chentouf, S.; Naubron, J.; Parrain, J.; Commeiras, L.; Nava, P.; Chouraqui, G. Designing Donor‐Acceptor Cyclopropane for the ThermalSynthesis of Carbocyclic Eight‐Membered Rings. Advanced Synthesis & Catalysis 2023, 365, 1002–1011. doi:10.1002/adsc.202300015
  • Zhang, J.; Wang, L.; Chong, Q.; Meng, F. Cobalt‐Catalyzed Diastereo‐ and Enantioselective Hydroarylation of Cyclopropenes with Arylboronic Acids. Asian Journal of Organic Chemistry 2023, 12. doi:10.1002/ajoc.202200720
  • Ji, H.; Knutson, P. C.; Harrington, C. M.; Ke, Y.-T.; Ferreira, E. M. The Analysis of Two Distinct Strategies toward the Enantioselective Formal Total Synthesis of (+)-Gelsenicine. Tetrahedron 2023, 134, 133278. doi:10.1016/j.tet.2023.133278
  • Mendel, M.; Gnägi, L.; Dabranskaya, U.; Schoenebeck, F. Rapid and Modular Access to Vinyl Cyclopropanes Enabled by Air-stable Palladium(I) Dimer Catalysis. Angewandte Chemie (International ed. in English) 2023, 62, e202211167. doi:10.1002/anie.202211167
  • Mendel, M.; Gnägi, L.; Dabranskaya, U.; Schoenebeck, F. Rapid and Modular Access to Vinyl Cyclopropanes Enabled by Air‐stable Palladium(I) Dimer Catalysis. Angewandte Chemie 2023, 135. doi:10.1002/ange.202211167
  • 茹, 莉. Study on Aromatic Cope Rearrangement Reaction. Journal of Organic Chemistry Research 2023, 11, 234–244. doi:10.12677/jocr.2023.114023
  • Pericyclases in Natural Product Biosynthesis. Natural Product Biosynthesis; The Royal Society of Chemistry, 2022; pp 658–704. doi:10.1039/bk9781839165641-00658
  • Fang, Z.; Ma, Y.; Liu, S.; Bai, H.; Li, S.; Ning, Y.; Zanoni, G.; Liu, Z. Silver-catalyzed [4 + 3] cycloaddition of 1,3-dienes with alkenyl-N-triftosylhydrazones: a practical approach to 1,4-cycloheptadienes. Organic Chemistry Frontiers 2022, 9, 4426–4434. doi:10.1039/d2qo00806h
  • Abegg, T.; Cossy, J.; Meyer, C. Cascade Cope/Winstein Rearrangements: Synthesis of Azido-Cycloheptadienes from Dialkenylcyclopropanes Possessing a Vinyl Azide. Organic letters 2022, 24, 4954–4959. doi:10.1021/acs.orglett.2c01888
  • Liu, Z.; Sivaguru, P.; Zanoni, G.; Bi, X. N-Triftosylhydrazones: A New Chapter for Diazo-Based Carbene Chemistry. Accounts of chemical research 2022, 55, 1763–1781. doi:10.1021/acs.accounts.2c00186
  • Liu, Z.; Yang, Y.; Jiang, X.; Song, Q.; Zanoni, G.; Liu, S.; Bi, X. Dearomative [4 + 3] cycloaddition of furans with vinyl-N-triftosylhydrazones by silver catalysis: stereoselective access to oxa-bridged seven-membered bicycles. Organic Chemistry Frontiers 2022, 9, 2444–2452. doi:10.1039/d2qo00256f
  • Hill, H. M.; Tucker, Z. D.; Rodriguez, K. X.; Wendt, K. A.; Ashfeld, B. L. Generation of Functionalized Azepinone Derivatives via a (4 + 3)-Cycloaddition of Vinyl Ketenes and α-Imino Carbenes Derived from N-Sulfonyl-triazoles. The Journal of organic chemistry 2022, 87, 3825–3833. doi:10.1021/acs.joc.1c03002
  • Sobie, K. M.; Albritton, M.; Yang, Y.; Alves, M. M.; Roitberg, A.; Grenning, A. J. Construction of vicinal 4°/3°-carbons via reductive Cope rearrangement. Chemical science 2022, 13, 1951–1956. doi:10.1039/d1sc06307c
Other Beilstein-Institut Open Science Activities