Supporting Information
Supporting Information File 1: Characterization data of intermediates and copolymers including 1H NMR and 13C NMR spectra, turbidity- and DLS-measurements. | ||
Format: PDF | Size: 702.9 KB | Download |
Cite the Following Article
Influence of cyclodextrin on the UCST- and LCST-behavior of poly(2-methacrylamido-caprolactam)-co-(N,N-dimethylacrylamide)
Alexander Burkhart and Helmut Ritter
Beilstein J. Org. Chem. 2014, 10, 1951–1958.
https://doi.org/10.3762/bjoc.10.203
How to Cite
Burkhart, A.; Ritter, H. Beilstein J. Org. Chem. 2014, 10, 1951–1958. doi:10.3762/bjoc.10.203
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Dirdal, E. G.; Kelland, M. A. Alternative Lactam-Based Kinetic Hydrate Inhibitors─Investigation of Polymers of 2-Methacrylamido-caprolactam. Energy & Fuels 2022, 36, 3107–3118. doi:10.1021/acs.energyfuels.2c00208
- Fuse, S.; Komuro, K.; Otake, Y.; Masui, H.; Nakamura, H. Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 7525–7532. doi:10.1002/chem.202100059
- Van Guyse, J. F. R.; Bera, D.; Hoogenboom, R. Adamantane Functionalized Poly(2-oxazoline)s with Broadly Tunable LCST-Behavior by Molecular Recognition. Polymers 2021, 13, 374. doi:10.3390/polym13030374
- Naya, M.; Kokado, K.; Sada, K. Triple Thermo-Responsiveness of a TADDOL-based Homopolymer through the Formation of Supramolecular Complexes with Chiral Guest Molecules at Variable Ratios. ACS Applied Polymer Materials 2020, 2, 4415–4424. doi:10.1021/acsapm.0c00491
- Wang, K.; Liu, Q.; Liu, G.; Zeng, Y.-F. Novel thermoresponsive homopolymers of poly[oligo(ethylene glycol) (acyloxy) methacrylate]s: LCST-type transition in water and UCST-type transition in alcohols. Polymer 2020, 203, 122746. doi:10.1016/j.polymer.2020.122746
- Dirdal, E. G.; Kelland, M. A. Synthesis and Investigation of Polymers of 2-Methacrylamido-caprolactam as Kinetic Hydrate Inhibitors. Energy & Fuels 2020, 34, 6981–6990. doi:10.1021/acs.energyfuels.0c00929
- Zhao, C.; Lu, J.; Zhu, X. X. Temperature-, Light-, and Host-Molecule-Responsive Polymers with UCST Behavior for Aqueous Sensing Applications. ACS Applied Polymer Materials 2019, 2, 256–262. doi:10.1021/acsapm.9b00779
- Tseng, W.-C.; Fang, T.-Y.; Chen, C.-Y.; Hsieh, Y.-C.; Lai, W. Upper Critical Solution Temperature‐Type Thermal Response of Soluble Multi‐l‐Arginyl‐Poly‐l‐Aspartic Acid (cyanophycin) Conjugated with Maltodextrin. Journal of Polymer Science Part A: Polymer Chemistry 2019, 57, 2048–2055. doi:10.1002/pola.29469
- Pan, J.; Rostamizadeh, K.; Filipczak, N.; Torchilin, V. P. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules (Basel, Switzerland) 2019, 24, 1035. doi:10.3390/molecules24061035
- Zhao, C.; Ma, Z.; Zhu, X. X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Progress in Polymer Science 2019, 90, 269–291. doi:10.1016/j.progpolymsci.2019.01.001
- Vega-Chacón, J.; Piazza, R. D.; Marques, R. F. C.; Elaissari, A.; Jafelicci, M. The influence of pH, hydrolysis and degree of substitution on the temperature‐sensitive properties of polyaspartamides. Polymer International 2018, 68, 88–93. doi:10.1002/pi.5699
- Yeshchenko, O. A.; Naumenko, A.; Kutsevol, N.; Maskova, D. O.; Harahuts, I. I.; Chumachenko, V.; Marinin, A. I. Anomalous Inverse Hysteresis of Phase Transition in Thermosensitive Dextran-graft-PNIPAM Copolymer/Au Nanoparticles Hybrid Nanosystem. The Journal of Physical Chemistry C 2018, 122, 8003–8010. doi:10.1021/acs.jpcc.8b01111
- Sumaru, K.; Takagi, T.; Satoh, T.; Kanamori, T. Photo- and Thermoresponsive Dehydration of Spiropyran-Functionalized Polymer Regulated by Molecular Recognition. Macromolecular rapid communications 2017, 39, 1700234. doi:10.1002/marc.201700234
- Szabó, Á.; Bencskó, G.; Szarka, G.; Iván, B. Thermoresponsive UCST-Type Behavior of Interpolymer Complexes of Poly(ethylene glycol) and Poly(poly(ethylene glycol) methacrylate) Brushes with Poly(acrylic acid) in Isopropanol. Macromolecular Chemistry and Physics 2017, 218, 1600466. doi:10.1002/macp.201600466
- Chiriac, A. P.; Balan, V.; Asandulesa, M.; Butnaru, E.; Tudorachi, N.; Stoleru, E.; Nita, L. E.; Neamtu, I.; Diaconu, A. Investigation on thermal, rheological, dielectric and spectroscopic properties of a polymer containing pendant spiroacetal moieties. Materials Chemistry and Physics 2016, 180, 291–300. doi:10.1016/j.matchemphys.2016.06.010
- De La Rosa, V. R.; Woisel, P.; Hoogenboom, R. Supramolecular control over thermoresponsive polymers. Materials Today 2016, 19, 44–55. doi:10.1016/j.mattod.2015.06.013
- Schönenberg, L.; Ritter, H. Polydimethylsiloxane macromonomer bearing N‐vinylcaprolactam as end group: thermosensitive graft copolymers via free radical polymerization. Polymer International 2015, 64, 1309–1315. doi:10.1002/pi.4952
- De La Rosa, V. R.; Nau, W. M.; Hoogenboom, R. Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazoline)s Composition and Supramolecular Host–Guest Interactions. International journal of molecular sciences 2015, 16, 7428–7444. doi:10.3390/ijms16047428
- Hrubý, M.; Filippov, S. K.; Štěpánek, P. Smart polymers in drug delivery systems on crossroads: Which way deserves following?. European Polymer Journal 2015, 65, 82–97. doi:10.1016/j.eurpolymj.2015.01.016
- De La Rosa, V. R.; Nau, W. M.; Hoogenboom, R. Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions. Organic & biomolecular chemistry 2015, 13, 3048–3057. doi:10.1039/c4ob02654c