A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration

Takahiro Furune, Naoko Ikuta, Yoshiyuki Ishida, Hinako Okamoto, Daisuke Nakata, Keiji Terao and Norihiro Sakamoto
Beilstein J. Org. Chem. 2014, 10, 2827–2835. https://doi.org/10.3762/bjoc.10.300

Cite the Following Article

A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration
Takahiro Furune, Naoko Ikuta, Yoshiyuki Ishida, Hinako Okamoto, Daisuke Nakata, Keiji Terao and Norihiro Sakamoto
Beilstein J. Org. Chem. 2014, 10, 2827–2835. https://doi.org/10.3762/bjoc.10.300

How to Cite

Furune, T.; Ikuta, N.; Ishida, Y.; Okamoto, H.; Nakata, D.; Terao, K.; Sakamoto, N. Beilstein J. Org. Chem. 2014, 10, 2827–2835. doi:10.3762/bjoc.10.300

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Farajpour Mojdehi, M.; Rafie, S. F.; Abu-Zahra, N.; Saghatchian, O.; Shams Ghamsari, Z.; Mahmoudi, F.; Sayahi, H.; Hashemianzadeh, S. M. Exploring the mechanisms of diazinon adsorption onto alpha and beta cyclodextrins through molecular dynamics simulations: Insights into environmentally friendly pesticide remediation. Results in Engineering 2024, 21, 102020. doi:10.1016/j.rineng.2024.102020
  • Sato, A.; Matsumoto, K.; Fukase, T.; Ebina, K. Indigestible Dextrin Alleviates the Intestinal Absorption of Alpha-linolenic Acid More Markedly Than That of Linoleic Acid in Obese Mice. Journal of Biologically Active Products from Nature 2023, 13, 410–423. doi:10.1080/22311866.2023.2256309
  • Elmowafy, E.; Pavoni, L.; Perinelli, D. R.; Tiboni, M.; Casettari, L.; Cespi, M.; El-khouly, A.; Soliman, M. E.; Bonacucina, G. Hyperlipidemia control using the innovative association of lupin proteins and chitosan and α-cyclodextrin dietary fibers: food supplement formulation, molecular docking study, and in vivo evaluation. European Food Research and Technology 2022, 248, 2977–2993. doi:10.1007/s00217-022-04105-9
  • Yamada, H.; Yamana, K.; Kawasaki, R.; Yasuhara, K.; Ikeda, A. Cyclodextrin-induced release of drug-entrapping liposomes associated with the solation of liposome gels. RSC advances 2022, 12, 22202–22209. doi:10.1039/d2ra03837d
  • Furune, T.; Terao, K. Complexation of Ingredients in Foods by Alpha-Cyclodextrin to Improve Their Functions. Functionality of Cyclodextrins in Encapsulation for Food Applications; Springer International Publishing, 2021; pp 277–297. doi:10.1007/978-3-030-80056-7_14
  • Chikamoto, K.; Terao, K. Alpha-Cyclodextrin Functions as a Dietary Fiber. Functionality of Cyclodextrins in Encapsulation for Food Applications; Springer International Publishing, 2021; pp 255–276. doi:10.1007/978-3-030-80056-7_13
  • Lee, E. Y.; Zhang, X.; Noda, T.; Miyamoto, J.; Kimura, I.; Tanaka, T.; Sakurai, K.; Hatano, R.; Miki, T. Lecithin Inclusion by α-Cyclodextrin Activates SREBP2 Signaling in the Gut and Ameliorates Postprandial Hyperglycemia. International journal of molecular sciences 2021, 22, 10796. doi:10.3390/ijms221910796
  • Duangjai, A.; Trisat, K.; Saokaew, S. Effect of Roasting Degree, Extraction Time, and Temperature of Coffee Beans on Anti-Hyperglycaemic and Anti-Hyperlipidaemic Activities Using Ultrasound-Assisted Extraction. Preventive nutrition and food science 2021, 26, 338–345. doi:10.3746/pnf.2021.26.3.338
  • Balkhyour, M. A.; Hassan, A. H.; Halawani, R. F.; Summan, A. S.; AbdElgawad, H. Effect of Elevated CO2 on Seed Yield, Essential Oil Metabolism, Nutritive Value, and Biological Activity of Pimpinella anisum L. Accessions at Different Seed Maturity Stages. Biology 2021, 10, 979. doi:10.3390/biology10100979
  • Almuhayawi, S. M.; Almuhayawi, M. S.; Al Jaouni, S. K.; Selim, S.; Hassan, A. H. Effect of Laser Light on Growth, Physiology, Accumulation of Phytochemicals, and Biological Activities of Sprouts of Three Brassica Cultivars. Journal of agricultural and food chemistry 2021, 69, 6240–6250. doi:10.1021/acs.jafc.1c01550
  • Almuhayawi, M. S.; Al Jaouni, S. K.; Almuhayawi, S. M.; Selim, S.; Abdel-Mawgoud, M. Elevated CO2 improves the nutritive value, antibacterial, anti-inflammatory, antioxidant and hypocholestecolemic activities of lemongrass sprouts. Food chemistry 2021, 357, 129730. doi:10.1016/j.foodchem.2021.129730
  • Ezawa, T.; Inagaki, Y.; Kashiwaba, K.; Matsumoto, N.; Moteki, H.; Murata, I.; Inoue, Y.; Kimura, M.; Ogihara, M.; Kanamoto, I. Solubility of Piperine and Its Inclusion Complexes in Biorelevant Media and Their Effect on Attenuating Mouse Ileum Contractions. ACS omega 2021, 6, 6953–6964. doi:10.1021/acsomega.0c06198
  • Hozzein, W. N.; Saleh, A. M.; Habeeb, T. H.; Wadaan, M. A. M.; AbdElgawad, H. CO2 treatment improves the hypocholesterolemic and antioxidant properties of fenugreek seeds. Food chemistry 2019, 308, 125661. doi:10.1016/j.foodchem.2019.125661
  • Okamoto, H.; Ino, S.; Nihei, N.; Ikuta, N.; Ueno, C.; Itoi, A.; Yoshikawa, Y.; Terao, K.; Sakamoto, N. Anti-obesity effects of α-cyclodextrin-stabilized 4-methylthio-3-butenyl isothiocyanate from daikon (Raphanus sativus var. longipinnatus) in mice. Journal of clinical biochemistry and nutrition 2019, 65, 99–108. doi:10.3164/jcbn.19-11
  • Sasaki, D.; Sasaki, K.; Ikuta, N.; Yasuda, T.; Fukuda, I.; Kondo, A.; Osawa, R. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Scientific reports 2018, 8, 435. doi:10.1038/s41598-017-18877-8
  • Jesch, E. D.; Carr, T. P. Food Ingredients That Inhibit Cholesterol Absorption. Preventive nutrition and food science 2017, 22, 67–80.
  • Koo, Y.-S.; Ko, D.-S.; Jeong, D.-W.; Shim, J.-H. Development and Application of Cyclodextrin Hydrolyzing Mutant Enzyme Which Hydrolyzes β- and γ-CD Selectively. Journal of agricultural and food chemistry 2017, 65, 2331–2336. doi:10.1021/acs.jafc.7b00269
  • Stappaerts, J.; Augustijns, P. Displacement of itraconazole from cyclodextrin complexes in biorelevant media: In vitro evaluation of supersaturation and precipitation behavior. International journal of pharmaceutics 2016, 511, 680–687. doi:10.1016/j.ijpharm.2016.07.063
  • Ryzhakov, A.; Do Thi, T.; Stappaerts, J.; Bertoletti, L.; Kimpe, K.; Couto, A. R. S.; Saokham, P.; Van den Mooter, G.; Augustijns, P.; Somsen, G. W.; Kurkov, S. V.; Inghelbrecht, S.; Arien, A.; Jimidar, M. I.; Schrijnemakers, K.; Loftsson, T. Self-Assembly of Cyclodextrins and Their Complexes in Aqueous Solutions. Journal of pharmaceutical sciences 2016, 105, 2556–2569. doi:10.1016/j.xphs.2016.01.019
  • Leclercq, L. Smart medical textiles based on cyclodextrins for curative or preventive patient care. Active Coatings for Smart Textiles; Elsevier, 2016; pp 391–427. doi:10.1016/b978-0-08-100263-6.00017-4

Patents

  • WITTKOWSKI KNUT M. USE OF CYCLODEXTRINS IN DISEASES AND DISORDERS INVOLVING PHOSPHOLIPID DYSREGULATION. EP 3687549 A4, July 14, 2021.
Other Beilstein-Institut Open Science Activities