Cite the Following Article
Catalytic Wittig and aza-Wittig reactions
Zhiqi Lao and Patrick H. Toy
Beilstein J. Org. Chem. 2016, 12, 2577–2587.
https://doi.org/10.3762/bjoc.12.253
How to Cite
Lao, Z.; Toy, P. H. Beilstein J. Org. Chem. 2016, 12, 2577–2587. doi:10.3762/bjoc.12.253
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 104.8 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Kushik; Petrov, A.; Ranieri, D.; Edelmann, L.; Beweries, T.; Hering‐Junghans, C. Die Azid‐Wittig Reaktion. Angewandte Chemie 2024, 136. doi:10.1002/ange.202412982
- Xie, C.; Chen, G.; Feng, C.-G.; Lin, G.-Q.; Hong, R. Recent advances in asymmetric P(III)/P(V)=O redox catalysis. Tetrahedron Letters 2024, 152, 155337. doi:10.1016/j.tetlet.2024.155337
- Templ, J.; Schnürch, M. Hochenergetisches Kugelmahlen ermöglicht eine ultraschnelle Wittig‐Olefinierung unter atmosphärischen und lösungsmittelfreien Bedingungen. Angewandte Chemie 2024, 136. doi:10.1002/ange.202411536
- Templ, J.; Schnürch, M. High-Energy Ball Milling Enables an Ultra-Fast Wittig Olefination Under Ambient and Solvent-free Conditions. Angewandte Chemie (International ed. in English) 2024, 63, e202411536. doi:10.1002/anie.202411536
- Zhang, Q.; Liu, S.; Xie, Y.; Du, T.; Wang, S.; Guan, J.; Li, J.; Tang, H.; Zhou, Z. Examining 1,4,2‐Dioxazol‐5‐One as an Alternative Reagent to Acyl Azides in the Staudinger Reaction. European Journal of Organic Chemistry 2024. doi:10.1002/ejoc.202400930
- Li, L.; Ma, Z.; Li, C.; Chen, G.; Gao, T. Visible light-induced recyclable porous g-C3N4 promoted one-pot alcohol oxidation–Wittig tandem reactions. New Journal of Chemistry 2024, 48, 16642–16648. doi:10.1039/d4nj03098b
- Kushik; Petrov, A.; Ranieri, D.; Edelmann, L.; Beweries, T.; Hering-Junghans, C. The Azide-Wittig Reaction. Angewandte Chemie (International ed. in English) 2024, 63, e202412982. doi:10.1002/anie.202412982
- De Nardi, F.; Gorreta, G.; Meazzo, C.; Parisotto, S.; Blangetti, M.; Prandi, C. Wittig Reaction in Deep Eutectic Solvents: Expanding the DES Toolbox in Synthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202402090. doi:10.1002/chem.202402090
- Jana, K.; Zhao, Z.; Musies, J.; Sparr, C. Atroposelective Arene‐Forming Wittig Reaction by Phosphorus PIII/PV=O Redox Catalysis. Angewandte Chemie 2024, 136. doi:10.1002/ange.202408159
- Jana, K.; Zhao, Z.; Musies, J.; Sparr, C. Atroposelective Arene-Forming Wittig Reaction by Phosphorus PIII/PV=O Redox Catalysis. Angewandte Chemie (International ed. in English) 2024, 63, e202408159. doi:10.1002/anie.202408159
- Manwar, R. R.; Balamurugan, R. Silver-Catalyzed Olefination of Aryl Aldehydes Using Propiolates. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202401905. doi:10.1002/chem.202401905
- Yasukawa, T. Development of nitrogen-doped carbon-supported metal catalysts for green organic synthesis. Bulletin of the Chemical Society of Japan 2024, 97. doi:10.1093/bulcsj/uoae076
- Kubota, K.; Hisazumi, R.; Seo, T.; Ito, H. Mechanochemistry enabled highly efficient solvent-free deoxygenation of phosphine oxides in air. RSC Mechanochemistry 2024, 1, 250–254. doi:10.1039/d4mr00011k
- Wang, W.; Cao, S.; Wang, Y.; Hu, B.; Zhu, X.; Sun, Y.; Wang, Y. Electrochemically‐Enabled Construction of N‐Acyl Iminophosphoranes. European Journal of Organic Chemistry 2024, 27. doi:10.1002/ejoc.202400440
- Gao, Y.; Zhang, X.; Tu, Z.; Yu, J.; Zhou, J. Diastereoselective Aldol Reaction of α‐Azido Ketones with α‐CF3 Pyruvate to Organoazides with Vicinal Tetrasubstituted Carbons. European Journal of Organic Chemistry 2024, 27. doi:10.1002/ejoc.202400348
- Jiang, T.; Coin, G.; Bordi, S.; Nichols, P. L.; Bode, J. W.; Wanner, B. M. Automated Synthesis for the Safe Production of Organic Azides from Primary Amines. The Journal of organic chemistry 2024, 89, 7962–7969. doi:10.1021/acs.joc.4c00603
- Zhang, J.; Kong, W.-Y.; Guo, W.; Tantillo, D. J.; Tang, Y. Combined Computational and Experimental Study Reveals Complex Mechanistic Landscape of Brønsted Acid-Catalyzed Silane-Dependent P═O Reduction. Journal of the American Chemical Society 2024, 146, 13983–13999. doi:10.1021/jacs.4c02042
- Lortie, J. L.; Davies, M.; Boyle, P. D.; Karttunen, M.; Ragogna, P. J. Chemoselective Staudinger Reactivity of Bis(azido)phosphines Supported with a π-Donating Imidazolin-2-iminato Ligand. Inorganic chemistry 2024, 63, 6335–6345. doi:10.1021/acs.inorgchem.4c00120
- Xie, H.; Zhang, Y.; Qin, X.; Gu, Y. Synthesis of 1,2,4-Trisubstituted Imidazoles via Sequential Staudinger/aza-Wittig/Aromatization Reaction. Chinese Journal of Organic Chemistry 2024, 44, 525. doi:10.6023/cjoc202306022
- Magné, V.; Serusi, L.; Gulea, M.; Hanquet, G.; Madec, D.; Panossian, A. Reduction of S O and SO2 to S, S–X to S–H, and P O to P. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-323-96025-0.00122-8