What contributes to an effective mannose recognition domain?

Christoph P. Sager, Deniz Eriş, Martin Smieško, Rachel Hevey and Beat Ernst
Beilstein J. Org. Chem. 2017, 13, 2584–2595. https://doi.org/10.3762/bjoc.13.255

Cite the Following Article

What contributes to an effective mannose recognition domain?
Christoph P. Sager, Deniz Eriş, Martin Smieško, Rachel Hevey and Beat Ernst
Beilstein J. Org. Chem. 2017, 13, 2584–2595. https://doi.org/10.3762/bjoc.13.255

How to Cite

Sager, C. P.; Eriş, D.; Smieško, M.; Hevey, R.; Ernst, B. Beilstein J. Org. Chem. 2017, 13, 2584–2595. doi:10.3762/bjoc.13.255

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1007.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Murphy, P. V.; Dhara, A.; Fitzgerald, L. S.; Hever, E.; Konda, S.; Mandal, K. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chemical Society reviews 2024, 53, 9428–9445. doi:10.1039/d4cs00642a
  • Nemli, D. D.; Jiang, X.; Jakob, R. P.; Gloder, L. M.; Schwardt, O.; Rabbani, S.; Maier, T.; Ernst, B.; Cramer, J. Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics. Journal of medicinal chemistry 2024, 67, 13813–13828. doi:10.1021/acs.jmedchem.4c00623
  • Lefèbre, J.; Falk, T.; Ning, Y.; Rademacher, C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202400660. doi:10.1002/chem.202400660
  • Chen, Y.; van den Nieuwendijk, A. M. C. H.; Wu, L.; Moran, E.; Skoulikopoulou, F.; van Riet, V.; Overkleeft, H. S.; Davies, G. J.; Armstrong, Z. Molecular Basis for Inhibition of Heparanases and β-Glucuronidases by Siastatin B. Journal of the American Chemical Society 2023, 146, 125–133. doi:10.1021/jacs.3c04162
  • Cramer1,2, J.; Pang3, L.; Ernst1, B. doi:10.1002/9783527831326.ch5
  • Scaglione, F.; Minghetti, P.; Ambrosio, F.; Ernst, B.; Ficarra, V.; Gobbi, M.; Naber, K.; Schellekens, H. Nature of the Interaction of Alpha-D-Mannose and Escherichia coli Bacteria, and Implications for its Regulatory Classification. A Delphi Panel European Consensus Based on Chemistry and Legal Evidence. Therapeutic innovation & regulatory science 2023, 57, 1153–1166. doi:10.1007/s43441-023-00548-8
  • Harjes, E.; Edwards, P. J. B.; Bisset, S. W.; Patchett, M. L.; Jameson, G. B.; Yang, S.-H.; Navo, C. D.; Harris, P. W. R.; Brimble, M. A.; Norris, G. E. NMR Shows Why a Small Chemical Change Almost Abolishes the Antimicrobial Activity of Glycocin F. Biochemistry 2023, 62, 2669–2676. doi:10.1021/acs.biochem.3c00197
  • Leusmann, S.; Ménová, P.; Shanin, E.; Titz, A.; Rademacher, C. Glycomimetics for the inhibition and modulation of lectins. Chemical Society reviews 2023, 52, 3663–3740. doi:10.1039/d2cs00954d
  • Mousavifar, L.; Roy, R. Recent development in the design of small 'drug-like' and nanoscale glycomimetics against Escherichia coli infections. Drug discovery today 2021, 26, 2124–2137. doi:10.1016/j.drudis.2021.02.025
  • Fernandez-Poza, S.; Padros, A.; Thompson, R.; Butler, L.; Islam, M.; Mosely, J. A.; Scrivens, J. H.; Rehman, M. F. u.; Akram, M. S. Tailor-made recombinant prokaryotic lectins for characterisation of glycoproteins. Analytica chimica acta 2021, 1155, 338352. doi:10.1016/j.aca.2021.338352
  • Diercks, T.; Medrano, F. J.; FitzGerald, F. G.; Beckwith, D.; Pedersen, M. J.; Reihill, M.; Ludwig, A.-K.; Romero, A. A.; Oscarson, S.; Cudic, M.; Gabius, H.-J. Galectin‐Glycan Interaction: Guideline for Monitoring by 77Se NMR Spectroscopy and Solvent (H2O/D2O) Impact on Binding. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 27, 316–325. doi:10.1002/chem.202003143
  • Hevey, R. The role of fluorine in glycomimetic drug design. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 27, 2240–2253. doi:10.1002/chem.202003135
  • Cramer, J.; Jiang, X.; Schönemann, W.; Silbermann, M.; Zihlmann, P.; Siegrist, S.; Fiege, B.; Jakob, R. P.; Rabbani, S.; Maier, T.; Ernst, B. Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding. RSC chemical biology 2020, 1, 281–287. doi:10.1039/d0cb00108b
  • St-Gelais, J.; Côté, É.; Lainé, D.; Johnson, P. A.; Giguère, D. Addressing the Structural Complexity of Fluorinated Glucose Analogues: Insight into Lipophilicities and Solvation Effects. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 13499–13506. doi:10.1002/chem.202002825
  • Achilli, S.; Monteiro, J. T.; Serna, S.; Mayer-Lambertz, S.; Thépaut, M.; Le Roy, A.; Ebel, C.; Reichardt, N.-C.; Lepenies, B.; Fieschi, F.; Vivès, C. TETRALEC, Artificial Tetrameric Lectins: A Tool to Screen Ligand and Pathogen Interactions. International journal of molecular sciences 2020, 21, 5290. doi:10.3390/ijms21155290
  • Keller, B. G.; Rademacher, C. Allostery in C-type lectins. Current opinion in structural biology 2019, 62, 31–38. doi:10.1016/j.sbi.2019.11.003
  • Hevey, R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel, Switzerland) 2019, 4, 53. doi:10.3390/biomimetics4030053
  • Cramer, J.; Sager, C. P.; Ernst, B. Hydroxyl Groups in Synthetic and Natural-Product-Derived Therapeutics: A Perspective on a Common Functional Group. Journal of medicinal chemistry 2019, 62, 8915–8930. doi:10.1021/acs.jmedchem.9b00179
  • Hevey, R. Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals (Basel, Switzerland) 2019, 12, 55. doi:10.3390/ph12020055
  • Ardá, A.; Jiménez-Barbero, J. The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chemical communications (Cambridge, England) 2018, 54, 4761–4769. doi:10.1039/c8cc01444b
Other Beilstein-Institut Open Science Activities