Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications

Stephen Hill and M. Carmen Galan
Beilstein J. Org. Chem. 2017, 13, 675–693. https://doi.org/10.3762/bjoc.13.67

Cite the Following Article

Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications
Stephen Hill and M. Carmen Galan
Beilstein J. Org. Chem. 2017, 13, 675–693. https://doi.org/10.3762/bjoc.13.67

How to Cite

Hill, S.; Galan, M. C. Beilstein J. Org. Chem. 2017, 13, 675–693. doi:10.3762/bjoc.13.67

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 196.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yao, Y.; Zhou, W.; Cai, K.; Wen, J.; Zhang, X. Advances in the study of the biological activity of polysaccharide-based carbon dots: A review. International journal of biological macromolecules 2024, 135774. doi:10.1016/j.ijbiomac.2024.135774
  • Ahmad, M. A.; Ulfa, D. K.; Sakti, S. C. W.; Khasanah, M.; Wibrianto, A.; Sugito, S. F. A.; Chang, J.-y.; Fahmi, M. Z. A photoluminescence and colorimetric dual-active mode of copper-modified carbon dots for quantitative sensing of histamine. Physica Scripta 2024, 99, 55931–055931. doi:10.1088/1402-4896/ad37ac
  • Üclü, S.; Marschelke, C.; Drees, F.; Giesler, M.; Wilms, D.; Köhler, T.; Schmidt, S.; Synytska, A.; Hartmann, L. Sweet Janus Particles: Multifunctional Inhibitors of Carbohydrate-Based Bacterial Adhesion. Biomacromolecules 2024, 25, 2399–2407. doi:10.1021/acs.biomac.3c01333
  • Balan, A.; Kennedy, M. M. R.; Manikantan, V.; Alexander, A.; Varalakshmi, G. S.; Ramasamy, S.; Pillai, A. S.; Enoch, I. V. M. V. Dysprosium-doped carbon quantum dot nanocarrier: in vitro anticancer activity. Bulletin of Materials Science 2024, 47. doi:10.1007/s12034-023-03109-9
  • de Medeiros, T. V.; Macina, A.; de Mesquita, J. P.; Naccache, R. Nitrogen-doped carbon dots in transesterification reactions for biodiesel synthesis. RSC Applied Interfaces 2024, 1, 86–97. doi:10.1039/d3lf00060e
  • Patel, V.; Shah, J. Anti-cancer and neuroprotective effects of conjugated graphene quantum dot in brain tumor-bearing rat model. Nano Express 2023, 4, 45010–045010. doi:10.1088/2632-959x/ad100d
  • Li, H.; Papadakis, R. Fluorescence Imaging Enhanced by Members of the Graphene Family: A Review. Fluorescence Imaging - Recent Advances and Applications; IntechOpen, 2023. doi:10.5772/intechopen.113228
  • Sameer, M.; Arif, Y.; Aqil, A.; Nadaf, A.; Rafiya, K.; Hasan, N.; Kesharwani, P.; Ahmad, F. J. Carbon nanodots as a remedial nanovesicles for drug delivery. European Polymer Journal 2023, 200, 112515. doi:10.1016/j.eurpolymj.2023.112515
  • Mandal, T.; Mishra, S. R.; Singh, V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. Nanoscale advances 2023, 5, 5717–5765. doi:10.1039/d3na00447c
  • Tabaraki, R.; Nazari, F. Microwave synthesis of carbon dots in ten choline chloride-based deep eutectic solvents: Effect of solvent molecular structure on carbon dots fluorescence and sensing properties. Journal of Photochemistry and Photobiology A: Chemistry 2023, 444, 114891. doi:10.1016/j.jphotochem.2023.114891
  • Karakus, G. Design, fabrication, and characterization of o-phenylenediamine surface-conjugated carbon quantum nanodots as a potential new bioactive formulation. Applied Nanoscience 2023, 13, 6667–6696. doi:10.1007/s13204-023-02962-8
  • Meher, M. K.; Unnikrishnan, B. S.; Tripathi, D. K.; Packirisamy, G.; Poluri, K. M. Baicalin functionalized PEI-heparin carbon dots as cancer theranostic agent. International journal of biological macromolecules 2023, 253, 126846. doi:10.1016/j.ijbiomac.2023.126846
  • Barhoum, A.; Meftahi, A.; Kashef Sabery, M. S.; Momeni Heravi, M. E.; Alem, F. A review on carbon dots as innovative materials for advancing biomedical applications: synthesis, opportunities, and challenges. Journal of Materials Science 2023, 58, 13531–13579. doi:10.1007/s10853-023-08797-6
  • Torres, F. G.; Gonzales, K. N.; Troncoso, O. P.; Cañedo, V. S. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Marine drugs 2023, 21, 338. doi:10.3390/md21060338
  • Kausar, A.; Ahmad, I.; Zhao, T.; Eisa, M.; Aldaghri, O.; Gupta, M.; Bocchetta, P. Green-Synthesized Graphene for Supercapacitors—Modern Perspectives. Journal of Composites Science 2023, 7, 108. doi:10.3390/jcs7030108
  • Bazazi, S.; Hosseini, S. P.; Hashemi, E.; Rashidzadeh, B.; Liu, Y.; Saeb, M. R.; Xiao, H.; Seidi, F. Polysaccharide-based C-dots and polysaccharide/C-dot nanocomposites: fabrication strategies and applications. Nanoscale 2023, 15, 3630–3650. doi:10.1039/d2nr07065k
  • Ge, M.; Liu, S.; Li, J.; Li, M.; Li, S.; James, T. D.; Chen, Z. Luminescent materials derived from biomass resources. Coordination Chemistry Reviews 2023, 477, 214951. doi:10.1016/j.ccr.2022.214951
  • Crista, D.; Algarra, M.; Martínez de Yuso, M. V.; Esteves da Silva, J. C. G.; Pinto da Silva, L. Investigation of the role of pH and the stoichiometry of the N-dopant in the luminescence, composition and synthesis yield of carbon dots. Journal of materials chemistry. B 2023, 11, 1131–1143. doi:10.1039/d2tb02318k
  • Ramos-Soriano, J.; Ghirardello, M.; Galan, M. C. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chemical Society reviews 2022, 51, 9960–9985. doi:10.1039/d2cs00741j
  • Çeşme, M.; Eskalen, H.; Başkaya, S. K. Fluorescent Carbon Dots from Vegetable and Fruit Wastes and Their Applications. Fruits and Vegetable Wastes; Springer Nature Singapore, 2022; pp 365–383. doi:10.1007/978-981-16-9527-8_15

Patents

  • ZADERKO ALEXANDER. Process for obtaining of fluoralkylated carbon quantum dots. US 12071575 B2, Aug 27, 2024.
  • BENITO-ALIFONSO DAVID; SWIFT THOMAS A; GALAN M CARMEN; WHITNEY HEATHER M. COMPOSITIONS AND METHODS FOR DELIVERY OF NUCLEIC ACID TO PLANT CELLS. EP 4012034 A1, June 15, 2022.
  • DORH NECIAH; DORH JOSEPHINE NDOA; BENITO-ALIFONSO DAVID; GALAN MARIA CARMEN; SPENCER JAMES; VENDEVILLE JEAN-BAPTISTE; KYRIAKIDES MATHEW JOHN; NEWMAN HENRY RALPH GORDON; HOLBROW-WILSHAW MAISIE EMMA. CELLULAR MATERIAL DETECTION PROBES. WO 2021224640 A1, Nov 11, 2021.
  • ZADERKO ALEXANDER. THE PROCESS FOR OBTAINING OF FLUORALKYLATED CARBON QUANTUM DOTS. WO 2020121119 A1, June 18, 2020.
  • CARMEN M GALAN; DAVID BENITO-ALIFONSO; THOMAS A SWIFT; HEATHER M WHITNEY. Compositions and methods for delivery of nucleic acid to plant cells. GB 2570804 A, Aug 7, 2019.
  • GALAN M CARMEN; BENITO-ALIFONSO DAVID; SWIFT THOMAS A; WHITNEY HEATHER M. COMPOSITIONS AND METHODS FOR DELIVERY OF NUCLEIC ACID TO PLANT CELLS. WO 2019134897 A1, July 11, 2019.
Other Beilstein-Institut Open Science Activities