Direct electrochemical generation of organic carbonates by dehydrogenative coupling

Tile Gieshoff, Vinh Trieu, Jan Heijl and Siegfried R. Waldvogel
Beilstein J. Org. Chem. 2018, 14, 1578–1582. https://doi.org/10.3762/bjoc.14.135

Supporting Information

Supporting Information File 1: Synthesis protocols, analytical data, GC chromatograms, MS spectra, and NMR spectra.
Format: PDF Size: 1.1 MB Download

Cite the Following Article

Direct electrochemical generation of organic carbonates by dehydrogenative coupling
Tile Gieshoff, Vinh Trieu, Jan Heijl and Siegfried R. Waldvogel
Beilstein J. Org. Chem. 2018, 14, 1578–1582. https://doi.org/10.3762/bjoc.14.135

How to Cite

Gieshoff, T.; Trieu, V.; Heijl, J.; Waldvogel, S. R. Beilstein J. Org. Chem. 2018, 14, 1578–1582. doi:10.3762/bjoc.14.135

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 108.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Heard, D. M.; Deeks, S. W.; Lennox, A. J. J. ERCAD: A Parametric Reactor Design Tool That Enables Rapid Prototyping and Optimization of Electrochemical Reactors through 3D Printing. ACS Central Science 2024. doi:10.1021/acscentsci.4c00988
  • Dupont, J.; Leal, B. C.; Lozano, P.; Monteiro, A. L.; Migowski, P.; Scholten, J. D. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chemical reviews 2024, 124, 5227–5420. doi:10.1021/acs.chemrev.3c00379
  • Gombos, L. G.; Nikl, J.; Waldvogel, S. R. Dual Roles of Supporting Electrolytes in Organic Electrosynthesis. ChemElectroChem 2024, 11. doi:10.1002/celc.202300730
  • Klein, M.; Waldvogel, S. R. Reaktionen an der Gegenelektrode – wichtige Stolpersteine auf dem Weg einer funktionierenden elektro‐organischen Synthese. Angewandte Chemie 2022, 134. doi:10.1002/ange.202204140
  • Klein, M.; Waldvogel, S. R. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angewandte Chemie (International ed. in English) 2022, 61, e202204140. doi:10.1002/anie.202204140
  • Dörr, M.; Hielscher, M. M.; Proppe, J.; Waldvogel, S. R. Electrosynthetic Screening and Modern Optimization Strategies for Electrosynthesis of Highly Value‐added Products. ChemElectroChem 2021, 8, 2621–2629. doi:10.1002/celc.202100318
  • Dörr, M.; Hielscher, M. M.; Proppe, J.; Waldvogel, S. R.
  • Beil, S. B.; Pollok, D.; Waldvogel, S. R. Reproducibility in Electroorganic Synthesis-Myths and Misunderstandings. Angewandte Chemie (International ed. in English) 2021, 60, 14750–14759. doi:10.1002/anie.202014544
  • Beil, S. B.; Pollok, D.; Waldvogel, S. R. Reproduzierbarkeit in der elektroorganischen Synthese – Mythen und Missverständnisse. Angewandte Chemie 2021, 133, 14874–14883. doi:10.1002/ange.202014544
  • Pollok, D.; Waldvogel, S. R. Electro-organic synthesis – a 21st century technique. Chemical science 2020, 11, 12386–12400. doi:10.1039/d0sc01848a
Other Beilstein-Institut Open Science Activities