Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis

Daniel F. Sauer, Johannes Schiffels, Takashi Hayashi, Ulrich Schwaneberg and Jun Okuda
Beilstein J. Org. Chem. 2018, 14, 2861–2871. https://doi.org/10.3762/bjoc.14.265

Cite the Following Article

Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis
Daniel F. Sauer, Johannes Schiffels, Takashi Hayashi, Ulrich Schwaneberg and Jun Okuda
Beilstein J. Org. Chem. 2018, 14, 2861–2871. https://doi.org/10.3762/bjoc.14.265

How to Cite

Sauer, D. F.; Schiffels, J.; Hayashi, T.; Schwaneberg, U.; Okuda, J. Beilstein J. Org. Chem. 2018, 14, 2861–2871. doi:10.3762/bjoc.14.265

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 907.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, X. Cyclization Strategies in Carbonyl–Olefin Metathesis: An Up-to-Date Review. Molecules 2024, 29, 4861. doi:10.3390/molecules29204861
  • Tunalı, Z.; Sagdic, K.; Inci, F.; Öztürk, B. Ö. Encapsulation of the Hoveyda–Grubbs 2nd generation catalyst in magnetically separable alginate/mesoporous carbon beads for olefin metathesis reactions in water. Reaction Chemistry & Engineering 2022, 7, 1617–1625. doi:10.1039/d2re00058j
  • Wittwer, M.; Markel, U.; Schiffels, J.; Okuda, J.; Sauer, D. F.; Schwaneberg, U. Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature Catalysis 2021, 4, 814–827. doi:10.1038/s41929-021-00673-3
  • Benke, Z.; Remete, A. M.; Kiss, L. A study on selective transformation of norbornadiene into fluorinated cyclopentane-fused isoxazolines. Beilstein journal of organic chemistry 2021, 17, 2051–2066. doi:10.3762/bjoc.17.132
  • Fischer, S.; Ward, T. R.; Liang, A. D. Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS catalysis 2021, 11, 6343–6347. doi:10.1021/acscatal.1c01470
  • Markel, U.; Sauer, D. F.; Wittwer, M.; Schiffels, J.; Cui, H.; Davari, M. D.; Kröckert, K.; Herres-Pawlis, S.; Okuda, J.; Schwaneberg, U. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis 2021, 11, 5079–5087. doi:10.1021/acscatal.1c00134
  • Thiel, A.; Sauer, D. F.; Markel, U.; Mertens, M. A. S.; Polen, T.; Schwaneberg, U.; Okuda, J. An artificial ruthenium-containing β-barrel protein for alkene–alkyne coupling reaction. Organic & biomolecular chemistry 2021, 19, 2912–2916. doi:10.1039/d1ob00279a
  • Matsuo, T. Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021, 11, 359. doi:10.3390/catal11030359
  • Kato, S.; Onoda, A.; Grimm, A. R.; Schwaneberg, U.; Hayashi, T. Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. Journal of inorganic biochemistry 2021, 216, 111352. doi:10.1016/j.jinorgbio.2020.111352
  • Kato, S.; Onoda, A.; Grimm, A. R.; Tachikawa, K.; Schwaneberg, U.; Hayashi, T. Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp2)–H Bond Functionalization. Inorganic chemistry 2020, 59, 14457–14463. doi:10.1021/acs.inorgchem.0c02245
  • Garakani, T. M.; Sauer, D. F.; Mertens, M. A. S.; Lazar, J.; Gehrmann, J.; Arlt, M.; Schiffels, J.; Schnakenberg, U.; Okuda, J.; Schwaneberg, U. FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catalysis 2020, 10, 10946–10953. doi:10.1021/acscatal.0c03055
  • Tiso, T.; Sauer, D. F.; Beckerle, K.; Blesken, C. C.; Okuda, J.; Blank, L. M. A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure. Catalysts 2020, 10, 874. doi:10.3390/catal10080874
  • Herndon, J. W. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coordination Chemistry Reviews 2019, 401, 213051. doi:10.1016/j.ccr.2019.213051
  • Grela, K.; Kajetanowicz, A. Progress in metathesis chemistry. Beilstein journal of organic chemistry 2019, 15, 2765–2766. doi:10.3762/bjoc.15.267
  • Mertens, M. A. S.; Sauer, D. F.; Markel, U.; Schiffels, J.; Okuda, J.; Schwaneberg, U. Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease. Catalysis Science & Technology 2019, 9, 5572–5576. doi:10.1039/c9cy01412h
  • Adachi, T.; Harada, A.; Yamaguchi, H. Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific reports 2019, 9, 13551. doi:10.1038/s41598-019-49844-0
  • Davis, H. J.; Ward, T. R. Artificial Metalloenzymes: Challenges and Opportunities. ACS central science 2019, 5, 1120–1136. doi:10.1021/acscentsci.9b00397
Other Beilstein-Institut Open Science Activities