Carbohydrate inhibitors of cholera toxin

Vajinder Kumar and W. Bruce Turnbull
Beilstein J. Org. Chem. 2018, 14, 484–498. https://doi.org/10.3762/bjoc.14.34

Cite the Following Article

Carbohydrate inhibitors of cholera toxin
Vajinder Kumar and W. Bruce Turnbull
Beilstein J. Org. Chem. 2018, 14, 484–498. https://doi.org/10.3762/bjoc.14.34

How to Cite

Kumar, V.; Turnbull, W. B. Beilstein J. Org. Chem. 2018, 14, 484–498. doi:10.3762/bjoc.14.34

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 329.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kundu, S.; Das, S.; Maitra, P.; Halder, P.; Koley, H.; Mukhopadhyay, A. K.; Miyoshi, S.-i.; Dutta, S.; Chatterjee, N. S.; Bhattacharya, S. Potential use of Sodium Butyrate (SB) as an anti-virulence agent againstVibrio choleraetargeting ToxT virulence protein. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.10.05.561138
  • Li, Y.; Yang, K.-d.; Kong, D.-C.; Ye, J.-F. Advances in phage display based nano immunosensors for cholera toxin. Frontiers in immunology 2023, 14, 1224397. doi:10.3389/fimmu.2023.1224397
  • Porkolab, V.; Lepšík, M.; Ordanini, S.; St John, A.; Le Roy, A.; Thépaut, M.; Paci, E.; Ebel, C.; Bernardi, A.; Fieschi, F. Powerful Avidity with a Limited Valency for Virus-Attachment Blockers on DC-SIGN: Combining Chelation and Statistical Rebinding with Structural Plasticity of the Receptor. ACS central science 2023, 9, 709–718. doi:10.1021/acscentsci.2c01136
  • White, C.; Bader, C.; Teter, K. The manipulation of cell signaling and host cell biology by cholera toxin. Cellular signalling 2022, 100, 110489. doi:10.1016/j.cellsig.2022.110489
  • McBerney, R.; Dolan, J. P.; Cawood, E. E.; Webb, M. E.; Turnbull, W. B. Bioorthogonal, Bifunctional Linker for Engineering Synthetic Glycoproteins. JACS Au 2022, 2, 2038–2047. doi:10.1021/jacsau.2c00312
  • Tomek, M. B.; Janesch, B.; Braun, M. L.; Taschner, M.; Figl, R.; Grünwald-Gruber, C.; Coyne, M. J.; Blaukopf, M.; Altmann, F.; Kosma, P.; Kählig, H.; Comstock, L. E.; Schäffer, C. A Combination of Structural, Genetic, Phenotypic and Enzymatic Analyses Reveals the Importance of a Predicted Fucosyltransferase to Protein O-Glycosylation in the Bacteroidetes. Biomolecules 2021, 11, 1795. doi:10.3390/biom11121795
  • Bremner, J. Future Possibilities. Multiple Action-Based Design Approaches to Antibacterials; Springer Singapore, 2021; pp 159–187. doi:10.1007/978-981-16-0999-2_5
  • Damalanka, V. C.; Maddirala, A. R.; Janetka, J. W. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert opinion on drug discovery 2021, 16, 513–536. doi:10.1080/17460441.2021.1857721
  • Niedzwiecka, A.; Achebe, N.; Ling, C.-C. Comprehensive Glycoscience - Glycoclusters and Glycodendrimers. Comprehensive Glycoscience; Elsevier, 2021; pp 263–345. doi:10.1016/b978-0-12-819475-1.00039-0
  • Toutounian, K.; Heinig, M. L.; Götz, P.; Ulsemer, P. Exploring the pathogen binding potential within the human gut microbiome. Human Microbiome Journal 2020, 18, 100075. doi:10.1016/j.humic.2020.100075
  • Youn, G.; Cervin, J.; Yu, X.; Bhatia, S. R.; Yrlid, U.; Sampson, N. S. Targeting Multiple Binding Sites on Cholera Toxin B with Glycomimetic Polymers Promotes the Formation of Protein-Polymer Aggregates. Biomacromolecules 2020, 21, 4878–4887. doi:10.1021/acs.biomac.0c01122
  • Laezza, A.; Georgiou, P. G.; Richards, S.-J.; Baker, A. N.; Walker, M.; Gibson, M. I. Protecting Group Free Synthesis of Glyconanoparticles Using Amino-Oxy-Terminated Polymer Ligands. Bioconjugate chemistry 2020, 31, 2392–2403. doi:10.1021/acs.bioconjchem.0c00465
  • Cervin, J.; Boucher, A.; Youn, G.; Björklund, P.; Wallenius, V.; Mottram, L.; Sampson, N. S.; Yrlid, U. Fucose-Galactose Polymers Inhibit Cholera Toxin Binding to Fucosylated Structures and Galactose-Dependent Intoxication of Human Enteroids. ACS infectious diseases 2020, 6, 1192–1203. doi:10.1021/acsinfecdis.0c00009
  • Ghosh, S. Sialic acid and biology of life: An introduction. Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Elsevier, 2020; pp 1–61. doi:10.1016/b978-0-12-816126-5.00001-9
  • Haksar, D.; van Ufford, L. Q.; Pieters, R. J. A hybrid polymer to target blood group dependence of cholera toxin. Organic & biomolecular chemistry 2019, 18, 52–55. doi:10.1039/c9ob02369k
  • Kimoto, Y.; Terada, Y.; Hoshino, Y.; Miura, Y. Screening of a Glycopolymer Library of GM1 Mimics Containing Hydrophobic Units Using Surface Plasmon Resonance Imaging. ACS omega 2019, 4, 20690–20696. doi:10.1021/acsomega.9b02877
  • Mahon, C. S.; Wildsmith, G. C.; Haksar, D.; de Poel, E.; Beekman, J. M.; Pieters, R. J.; Webb, M. E.; Turnbull, W. B. A 'catch-and-release' receptor for the cholera toxin. Faraday discussions 2019, 219, 112–127. doi:10.1039/c9fd00017h
  • Cervin, J.
  • Gangopadhyay, A.; Chakraborty, H. J.; Datta, A. Employing virtual screening and molecular dynamics simulations for identifying hits against the active cholera toxin. Toxicon : official journal of the International Society on Toxinology 2019, 170, 1–9. doi:10.1016/j.toxicon.2019.09.005
  • Meiers, J.; Siebs, E.; Zahorska, E.; Titz, A. Lectin antagonists in infection, immunity, and inflammation. Current opinion in chemical biology 2019, 53, 51–67. doi:10.1016/j.cbpa.2019.07.005
Other Beilstein-Institut Open Science Activities