Supporting Information
Supporting Information File 1: Additional figure, general remarks, synthesis and characterization data, including copies of 1H and 13C NMR spectra. | ||
Format: PDF | Size: 630.5 KB | Download |
Cite the Following Article
Investigating radical cation chain processes in the electrocatalytic Diels–Alder reaction
Yasushi Imada, Yohei Okada and Kazuhiro Chiba
Beilstein J. Org. Chem. 2018, 14, 642–647.
https://doi.org/10.3762/bjoc.14.51
How to Cite
Imada, Y.; Okada, Y.; Chiba, K. Beilstein J. Org. Chem. 2018, 14, 642–647. doi:10.3762/bjoc.14.51
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 181.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Alabugin, I. V.; Eckhardt, P.; Christopher, K. M.; Opatz, T. The Photoredox Paradox: Electron and Hole Upconversion as the Hidden Secrets of Photoredox Catalysis. Journal of the American Chemical Society 2024, 146, 27233–27254. doi:10.1021/jacs.4c10422
- Turlington, M. D.; Ahmed, S.; Schanze, K. S. Radical Cation Diels–Alder Reaction by Photocatalysis at a Dye Sensitized Photoanode. ACS Catalysis 2024, 14, 12512–12517. doi:10.1021/acscatal.4c01288
- Nematollahi, D.; Alizadeh, S.; Amani, A.; Khazalpour, S. Diels–Alder reaction in electroorganic synthesis. Practical Aspects of Electroorganic Synthesis; Elsevier, 2024; pp 221–247. doi:10.1016/b978-0-323-95666-6.00001-x
- Chabuka, B. K.; Alabugin, I. V. Hole Catalysis of Cycloaddition Reactions: How to Activate and Control Oxidant Upconversion in Radical-Cationic Diels-Alder Reactions. Journal of the American Chemical Society 2023, 145, 19354–19367. doi:10.1021/jacs.3c06106
- Francke, R.; Little, R. D. Electrochemical catalysis of redox-neutral organic reactions. Current Opinion in Electrochemistry 2023, 40, 101315. doi:10.1016/j.coelec.2023.101315
- Tanami, S.; Hussaini, S. R.; Kitano, Y.; Chiba, K.; Okada, Y. Probing Electron Transfer Events in Radical Cation Cycloadditions: Intramolecular vs. Intermolecular Single Electron Transfer. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202201023
- Horiguchi, G.; Okada, Y. Mechanistic Understanding of Electrocatalytic Vinylcyclopropane Rearrangement. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202201022
- SHIDA, N. Electrosynthesis Governed by Electrolyte: Case Studies that Give Some Hints for the Rational Design of Electrolyte. Electrochemistry 2022, 90, 101004. doi:10.5796/electrochemistry.22-00074
- Ohmura, S.; Isogai, R.; Ishihara, K. Radical Cation [4+2] Cycloaddition of Non-Conjugated Tetrasubstituted Alkenes by an FeCl3/AgSbF6 Co-Initiator. Asian Journal of Organic Chemistry 2021, 10, 2534–2537. doi:10.1002/ajoc.202100473
- Liang, K.; Wang, S.; Cong, H.; Lu, L.; Lei, A.
- Okada, Y. Synthetic Semiconductor Photoelectrochemistry. Chemical record (New York, N.Y.) 2021, 21, 2223–2238. doi:10.1002/tcr.202100029
- Horiguchi, G.; Kamiya, H.; Okada, Y. Mechanistic Studies on TiO2 Photoelectrochemical Radical Cation [2 + 2] Cycloadditions. Journal of The Electrochemical Society 2020, 167, 155529. doi:10.1149/1945-7111/abcffc
- Wang, Q.; Wang, Q.; Zhang, Y.; Mohamed, Y. M.; Pacheco, C.; Zheng, N.; Zare, R. N.; Chen, H. Electrocatalytic redox neutral [3 + 2] annulation of N-cyclopropylanilines and alkenes. Chemical science 2020, 12, 969–975. doi:10.1039/d0sc05665k
- Okada, Y. Redox-Neutral Radical-Cation Reactions: Multiple Carbon–Carbon Bond Formations Enabled by Single-Electron Transfer. Electrochemistry 2020, 88, 497–506. doi:10.5796/electrochemistry.20-00088
- Nakayama, K.; Kamiya, H.; Okada, Y. EC-Backward-E Electrochemistry in Radical Cation Diels-Alder Reactions. Journal of The Electrochemical Society 2020, 167, 155518. doi:10.1149/1945-7111/abb97f
- Hu, X.; Nie, L.; Zhang, G.; Lei, A. Electrochemical Oxidative [4+2] Annulation for the π‐Extension of Unfunctionalized Heterobiaryl Compounds. Angewandte Chemie (International ed. in English) 2020, 59, 15238–15243. doi:10.1002/anie.202003656
- Hu, X.; Nie, L.; Zhang, G.; Lei, A. Electrochemical Oxidative [4+2] Annulation for the π‐Extension of Unfunctionalized Heterobiaryl Compounds. Angewandte Chemie 2020, 132, 15350–15355. doi:10.1002/ange.202003656
- Roesel, A. F.; Ugandi, M.; Huyen, N. T. T.; Majek, M.; Broese, T.; Roemelt, M.; Francke, R. Electrochemically Catalyzed Newman–Kwart Rearrangement: Mechanism, Structure–Reactivity Relationship, and Parallels to Photoredox Catalysis. The Journal of organic chemistry 2020, 85, 8029–8044. doi:10.1021/acs.joc.0c00831
- Heravi, M. M.; Zadsirjan, V.; Kouhestanian, E.; AlimadadiJani, B. Electrochemically Induced Diels‐Alder Reaction: An Overview. Chemical record (New York, N.Y.) 2019, 20, 273–331. doi:10.1002/tcr.201900018
- Francke, R.; Little, R. D. Electrons and Holes as Catalysts in Organic Electrosynthesis. ChemElectroChem 2019, 6, 4373–4382. doi:10.1002/celc.201900432