Supporting Information
Supporting Information File 1: Cartesian coordinates for all species. | ||
Format: TXT | Size: 154.0 KB | Download |
Cite the Following Article
Understanding the role of active site residues in CotB2 catalysis using a cluster model
Keren Raz, Ronja Driller, Thomas Brück, Bernhard Loll and Dan T. Major
Beilstein J. Org. Chem. 2020, 16, 50–59.
https://doi.org/10.3762/bjoc.16.7
How to Cite
Raz, K.; Driller, R.; Brück, T.; Loll, B.; Major, D. T. Beilstein J. Org. Chem. 2020, 16, 50–59. doi:10.3762/bjoc.16.7
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 639.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Himpich, S.; Ringel, M.; Schwartz, R.; Dimos, N.; Driller, R.; Helmer, C. P. O.; Kumar Gupta, P.; Haack, M.; Thomas Major, D.; Brück, T.; Loll, B. How Can the Diterpene Synthase CotB2V80L Alter the Product Profile?. ChemCatChem 2024, 16. doi:10.1002/cctc.202400711
- Tarannam, N.; Gupta, P. K.; Zev, S.; Major, D. T. Stability trends in carbocation intermediates stemming from germacrene A and hedycaryol. Beilstein journal of organic chemistry 2024, 20, 1189–1197. doi:10.3762/bjoc.20.101
- Wang, X.; Huang, Y.; Zhang, W.; Lv, K.; Li, X.; Wang, Z.; Zhang, L.; Hsiang, T.; Zhang, L.; Ouyang, L.; Liu, X. Expanding catalytic promiscuity of a bifunctional terpene synthase through a single mutation-induced change in hydrogen-bond network within the catalytic pocket. Synthetic and systems biotechnology 2024, 9, 380–387. doi:10.1016/j.synbio.2024.03.007
- Spencer, T. A.; Ditchfield, R. Tryptophan Stabilization of a Biochemical Carbocation Evaluated by Analysis of π Complexes of 3-Ethylindole with the t-Butyl Cation. ACS omega 2023, 8, 26497–26507. doi:10.1021/acsomega.3c03259
- Liu, J.-Y.; Lin, F.-L.; Lv, J.-M.; Hu, D.; Gao, H. Biosynthesis of fusicoccane-type diterpenoids featuring a 5–8–5 tricyclic carbon skeleton. Tetrahedron Letters 2022, 112, 154224. doi:10.1016/j.tetlet.2022.154224
- Gong, K.; Yong, D.; Fu, J.; Li, A.; Zhang, Y.; Li, R. Diterpenoids from Streptomyces: Structures, Biosyntheses and Bioactivities. Chembiochem : a European journal of chemical biology 2022, 23, e202200231. doi:10.1002/cbic.202200231
- Ringel, M.; Dimos, N.; Himpich, S.; Haack, M.; Huber, C.; Eisenreich, W.; Schenk, G.; Loll, B.; Brück, T. Biotechnological potential and initial characterization of two novel sesquiterpene synthases from Basidiomycota Coniophora puteana for heterologous production of δ-cadinol. Microbial cell factories 2022, 21, 64. doi:10.1186/s12934-022-01791-8
- Paul, T. K.; Taraphder, S. Molecular modelling of two coordination states of Zn(II) ion at the active site of human carbonic anhydrase II. Chemical Physics 2021, 549, 111281. doi:10.1016/j.chemphys.2021.111281
- Raz, K.; Driller, R.; Dimos, N.; Ringel, M.; Brück, T.; Loll, B.; Major, D. T. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. Journal of the American Chemical Society 2020, 142, 21562–21574. doi:10.1021/jacs.0c11348
- Tang, X.; Zhang, F.; Zeng, T.; Li, W.; Yin, S.; Wu, R. Enzymatic Plasticity Inspired by the Diterpene Cyclase CotB2. ACS chemical biology 2020, 15, 2820–2832. doi:10.1021/acschembio.0c00645
- Ringel, M.; Reinbold, M.; Hirte, M.; Haack, M.; Huber, C.; Eisenreich, W.; Masri, M.; Schenk, G.; Guddat, L. W.; Loll, B.; Kerr, R. G.; Garbe, D.; Brück, T. Towards a sustainable generation of pseudopterosin-type bioactives. Green Chemistry 2020, 22, 6033–6046. doi:10.1039/d0gc01697g
- Raz, K.; Levi, S.; Gupta, P. K.; Major, D. T. Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations. Current opinion in biotechnology 2020, 65, 248–258. doi:10.1016/j.copbio.2020.06.002
- Sheng, X.; Kazemi, M.; Planas, F.; Himo, F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catalysis 2020, 10, 6430–6449. doi:10.1021/acscatal.0c00983