The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable Brønsted acid catalysts

Svetlana A. Kuznetsova, Alexander S. Gak, Yulia V. Nelyubina, Vladimir A. Larionov, Han Li, Michael North, Vladimir P. Zhereb, Alexander F. Smol'yakov, Artem O. Dmitrienko, Michael G. Medvedev, Igor S. Gerasimov, Ashot S. Saghyan and Yuri N. Belokon
Beilstein J. Org. Chem. 2020, 16, 1124–1134. https://doi.org/10.3762/bjoc.16.99

Supporting Information

Supporting Information File 1: Experimental, characterization, and pKa calculation details as well as SEM and TGA analyses.
Format: PDF Size: 3.6 MB Download
Supporting Information File 2: X-ray details for F-1 (F-1a phase).
Format: CIF Size: 3.8 MB Download
Supporting Information File 3: X-ray details for F-1 (F-1a’ phase).
Format: CIF Size: 1.1 MB Download

Cite the Following Article

The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable Brønsted acid catalysts
Svetlana A. Kuznetsova, Alexander S. Gak, Yulia V. Nelyubina, Vladimir A. Larionov, Han Li, Michael North, Vladimir P. Zhereb, Alexander F. Smol'yakov, Artem O. Dmitrienko, Michael G. Medvedev, Igor S. Gerasimov, Ashot S. Saghyan and Yuri N. Belokon
Beilstein J. Org. Chem. 2020, 16, 1124–1134. https://doi.org/10.3762/bjoc.16.99

How to Cite

Kuznetsova, S. A.; Gak, A. S.; Nelyubina, Y. V.; Larionov, V. A.; Li, H.; North, M.; Zhereb, V. P.; Smol'yakov, A. F.; Dmitrienko, A. O.; Medvedev, M. G.; Gerasimov, I. S.; Saghyan, A. S.; Belokon, Y. N. Beilstein J. Org. Chem. 2020, 16, 1124–1134. doi:10.3762/bjoc.16.99

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 252.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • O'Shaughnessy, M.; Padgham, A. C.; Clowes, R.; Little, M. A.; Brand, M. C.; Qu, H.; Slater, A. G.; Cooper, A. I. Controlling the Crystallisation and Hydration State of Crystalline Porous Organic Salts. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202302420. doi:10.1002/chem.202302420
  • Zhigileva, E. A.; Enakieva, Y. Y.; Sinelshchikova, A. A.; Chernyshev, V. V.; Senchikhin, I. N.; Kovalenko, K. A.; Stenina, I. A.; Yaroslavtsev, A. B.; Gorbunova, Y. G.; Tsivadze, A. Y. An anionic porphyrinylphosphonate-based hydrogen-bonded organic framework: optimization of proton conductivity through the exchange of counterions. Dalton transactions (Cambridge, England : 2003) 2023, 52, 8237–8246. doi:10.1039/d3dt01118f
  • Ding, X.; Luo, Y.; Wang, W.; Hu, T.; Chen, J.; Ye, G. Charge-Assisted Hydrogen-Bonded Organic Frameworks with Inorganic Ammonium Regulated Switchable Open Polar Sites. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2207771. doi:10.1002/smll.202207771
  • Kuznetsova, S. A.; Yunusov, S. M.; Gak, A. S.; Riazanov, V. I.; Nelyubina, Y. V.; Barker, R.; North, M.; Zhereb, V. P.; Khakina, E. A.; Naumkin, A.; Lobanov, N. N.; Khrustalev, V. N.; Chusov, D.; Kalyuzhnaya, E. S.; Belokon, Y. N. Palladium Nanoparticles Entrapped In a Hydrogen Bonded Crystalline Organic Salt Matrix as a Selective Heterogeneous Reduction Catalyst. ChemistrySelect 2022, 7. doi:10.1002/slct.202203011
  • Sinelshchikova, A. A.; Enakieva, Y. Y.; Grigoriev, M. S.; Gorbunova, Y. G. STRUCTURAL FEATURES OF HYDROGEN- BONDED ORGANIC FRAMEWORKS BASED ON NICKEL(II) 5,10,15,20-TETRAKIS(4- PHOSPHONATOPHENYL)PORPHYRINATE. Journal of Structural Chemistry 2022, 63, 874–884. doi:10.1134/s002247662206004x
  • Song, X.; Wang, Y.; Wang, C.; Wang, D.; Zhuang, G.; Kirlikovali, K. O.; Li, P.; Farha, O. K. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society 2022, 144, 10663–10687. doi:10.1021/jacs.2c02598
  • Li, S.-L.; Shen, Y.; Yang, W.; Wang, Y.-J.; Qi, Z.; Zhang, J.; Zhang, X.-M. The photo-responsive charge-assisted hydrogen-bonded organic network with ultra-stable viologen radicals. Chinese Journal of Chemistry 2021, 40, 351–356. doi:10.1002/cjoc.202100639
  • Gak, A. S.; Kuznetsova, S. A.; Nelyubina, Y. V.; Korlyukov, A. A.; Li, H.; North, M.; Zhereb, V. P.; Riazanov, V.; Peregudov, A. S.; Khakina, E. A.; Lobanov, N. N.; Khrustalev, V. N.; Belokon, Y. N. Inhibition by Water during Heterogeneous Brønsted Acid Catalysis by Three-Dimensional Crystalline Organic Salts. Crystal Growth & Design 2021, 21, 6364–6372. doi:10.1021/acs.cgd.1c00838
  • Yu, S.; Xing, G.; Chen, L.-H.; Ben, T.; Su, B.-L. Crystalline Porous Organic Salts: From Micropore to Hierarchical Pores. Advanced materials (Deerfield Beach, Fla.) 2020, 32, 2003270. doi:10.1002/adma.202003270
  • Wang, B.; Lin, R.-B.; Zhang, Z.; Xiang, S.; Chen, B. Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. Journal of the American Chemical Society 2020, 142, 14399–14416. doi:10.1021/jacs.0c06473
  • Liaquat, H.; Imran, M.; Saddique, Z.; Latif, S.; Al-Ahmary, K. M.; Sohail, A.; Raza, H.; Ahmed, M. Exploring the versatility of hydrogen-bonded organic frameworks: Advances in design, stability, and multifunctional applications. Journal of Molecular Structure 1321, 140221. doi:10.1016/j.molstruc.2024.140221

Patents

  • KHAN MOHD YUSUF; KHAN ABUZAR; HELAL AASIF; YAMANI ZAIN H. One-pot synthesis of hydrogen-bonded organic frameworks. US 11472779 B1, Oct 18, 2022.
Other Beilstein-Institut Open Science Activities