Green chemistry is attracting increasing attention from many scientific areas proving that the development of a sustainable civilization is a common goal that can stem from numerous approaches
Within this context, chemistry certainly plays a crucial role in the design and implementation of innovative processes aimed at increasing the competitiveness and the efficiency of a modern chemical production. Organic chemistry in particular, is a pivotal research area able to contribute to the development of green chemistry in many different aspects: identification and manipulation of novel materials deriving from renewable resources, innovative and sustainable catalytic systems able to optimize known processes or access new chemical transformations, novel technologies able to increase the energy efficiency of the organic synthesis (e.g. microwave or ultrasounds irradiations, flow chemistry, …), definition of highly productive multicomponent processes, identification of new safer alternatives to replace toxic solvents. These are just some examples of the green chemistry toolbox and in this thematic issue we aim to collect original research and review articles dealing with the multidisciplinary and broad field of green organic chemistry.
Beilstein J. Org. Chem. 2019, 15, 2577–2589, doi:10.3762/bjoc.15.251
Beilstein J. Org. Chem. 2019, 15, 2907–2913, doi:10.3762/bjoc.15.284
Beilstein J. Org. Chem. 2019, 15, 2930–2935, doi:10.3762/bjoc.15.287
Beilstein J. Org. Chem. 2020, 16, 351–361, doi:10.3762/bjoc.16.34
Beilstein J. Org. Chem. 2020, 16, 1001–1005, doi:10.3762/bjoc.16.89
Beilstein J. Org. Chem. 2020, 16, 1124–1134, doi:10.3762/bjoc.16.99
Beilstein J. Org. Chem. 2020, 16, 1225–1233, doi:10.3762/bjoc.16.106
Beilstein J. Org. Chem. 2020, 16, 1465–1475, doi:10.3762/bjoc.16.122
Beilstein J. Org. Chem. 2020, 16, 1554–1563, doi:10.3762/bjoc.16.127
Beilstein J. Org. Chem. 2020, 16, 1713–1721, doi:10.3762/bjoc.16.143
Beilstein J. Org. Chem. 2020, 16, 1881–1900, doi:10.3762/bjoc.16.156
Beilstein J. Org. Chem. 2020, 16, 1915–1923, doi:10.3762/bjoc.16.158
Beilstein J. Org. Chem. 2020, 16, 1924–1935, doi:10.3762/bjoc.16.159
Beilstein J. Org. Chem. 2020, 16, 2346–2362, doi:10.3762/bjoc.16.196
Beilstein J. Org. Chem. 2020, 16, 2477–2483, doi:10.3762/bjoc.16.201
Beilstein J. Org. Chem. 2020, 16, 2862–2869, doi:10.3762/bjoc.16.235
Beilstein J. Org. Chem. 2020, 16, 2888–2902, doi:10.3762/bjoc.16.238
Beilstein J. Org. Chem. 2020, 16, 2920–2928, doi:10.3762/bjoc.16.241
Beilstein J. Org. Chem. 2020, 16, 2929–2936, doi:10.3762/bjoc.16.242
Beilstein J. Org. Chem. 2020, 16, 3008–3014, doi:10.3762/bjoc.16.250
Beilstein J. Org. Chem. 2020, 16, 3093–3103, doi:10.3762/bjoc.16.259
Beilstein J. Org. Chem. 2021, 17, 203–209, doi:10.3762/bjoc.17.20
Beilstein J. Org. Chem. 2021, 17, 485–493, doi:10.3762/bjoc.17.42
Beilstein J. Org. Chem. 2021, 17, 581–588, doi:10.3762/bjoc.17.52
Beilstein J. Org. Chem. 2021, 17, 589–621, doi:10.3762/bjoc.17.53
Beilstein J. Org. Chem. 2021, 17, 762–770, doi:10.3762/bjoc.17.66
Beilstein J. Org. Chem. 2021, 17, 1041–1047, doi:10.3762/bjoc.17.83