Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications

Nikita Brodyagin, Martins Katkevics, Venubabu Kotikam, Christopher A. Ryan and Eriks Rozners
Beilstein J. Org. Chem. 2021, 17, 1641–1688. https://doi.org/10.3762/bjoc.17.116

Cite the Following Article

Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications
Nikita Brodyagin, Martins Katkevics, Venubabu Kotikam, Christopher A. Ryan and Eriks Rozners
Beilstein J. Org. Chem. 2021, 17, 1641–1688. https://doi.org/10.3762/bjoc.17.116

How to Cite

Brodyagin, N.; Katkevics, M.; Kotikam, V.; Ryan, C. A.; Rozners, E. Beilstein J. Org. Chem. 2021, 17, 1641–1688. doi:10.3762/bjoc.17.116

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Farshineh Saei, S.; Baskevics, V.; Katkevics, M.; Rozners, E. Recognition of Noncanonical RNA Base Pairs Using Triplex-Forming Peptide Nucleic Acids. ACS chemical biology 2024. doi:10.1021/acschembio.4c00662
  • Giancola, J. B.; Raines, R. T. Endosomolytic peptides enable the cellular delivery of peptide nucleic acids. Chemical communications (Cambridge, England) 2024, 60, 15019–15022. doi:10.1039/d4cc05214e
  • Kedir, W. M.; Li, L.; Tan, Y. S.; Bajalovic, N.; Loke, D. K. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. Journal of materials chemistry. B 2024, 12, 12141–12173. doi:10.1039/d4tb01667j
  • Ramírez-Cortés, F.; Ménová, P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC medicinal chemistry 2024. doi:10.1039/d4md00652f
  • Kim, M.; Hwang, H.; Kim, Y.-T.; Hong, I. S. Atom-Economical and Environmentally Friendly Bts-Based Purine PNA Monomers without Base-Protecting Groups. Organic Process Research & Development 2024, 28, 4492–4500. doi:10.1021/acs.oprd.4c00413
  • D'Andrea, L. D.; Romanelli, A. Morphology and Applications of Self-Assembled Peptide Nucleic Acids. International journal of molecular sciences 2024, 25, 12435. doi:10.3390/ijms252212435
  • Everly, M. E.; Emehiser, R. G.; Hrdlicka, P. J. Recognition of mixed-sequence double-stranded DNA regions using chimeric Invader/LNA probes. Organic & biomolecular chemistry 2024. doi:10.1039/d4ob01403k
  • Lu, R.; Deng, L.; Lian, Y.; Ke, X.; Yang, L.; Xi, K.; Ong, A. A. L.; Chen, Y.; Zhou, H.; Meng, Z.; Lin, R.; Fan, S.; Liu, Y.; Toh, D.-F. K.; Zhan, X.; Krishna, M. S.; Patil, K. M.; Lu, Y.; Liu, Z.; Zhu, L.; Wang, H.; Li, G.; Chen, G. Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform. Cell Reports Physical Science 2024, 5, 102150. doi:10.1016/j.xcrp.2024.102150
  • Nazzal, H.; Gupta, M. K.; Fadila, A.; Yavin, E. A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base. Molecules (Basel, Switzerland) 2024, 29, 4136. doi:10.3390/molecules29174136
  • Carson, L. M.; Watson, E. E. Peptide Nucleic Acids: From Origami to Editing. ChemPlusChem 2024, 89, e202400305. doi:10.1002/cplu.202400305
  • Todkari, I. A.; Chaudhary, P.; Kulkarni, M. J.; Ganesh, K. N. Supramolecular polyplexes from Janus peptide nucleic acids (bm-PNA-G5): self-assembled bm-PNA G-quadruplex and its tetraduplex with DNA. Organic & biomolecular chemistry 2024, 22, 6810–6821. doi:10.1039/d4ob00968a
  • Rahman, M. M.; Ryan, C. A.; Tessier, B. R.; Rozners, E. Peptide nucleic acids (PNAs) control function of SARS-CoV-2 frameshifting stimulatory element trough PNA-RNA-PNA triplex formation. Heliyon 2024, 10, e33914. doi:10.1016/j.heliyon.2024.e33914
  • Giancola, J. B.; Raines, R. T. Endosomolytic Peptides Enable the Cellular Delivery of Peptide Nucleic Acids. 2024. doi:10.1101/2024.06.18.599558
  • Mannully, S. T.; Mahajna, R.; Nazzal, H.; Maree, S.; Zheng, H.; Appella, D. H.; Reich, R.; Yavin, E. Detecting the FLJ22447 lncRNA in Ovarian Cancer with Cyclopentane-Modified FIT-PNAs (cpFIT-PNAs). Biomolecules 2024, 14, 609. doi:10.3390/biom14060609
  • Lu, R.; Deng, L.; Lian, Y.; Ke, X.; Yang, L.; Xi, K.; Lerk Ong, A. A.; Chen, Y.; Zhou, H.; Meng, Z.; Lin, R.; Fan, S.; Liu, Y.; Toh, D.-F. K.; Zhan, X.; Krishna, M. S.; Patil, K. M.; Lu, Y.; Liu, Z.; Zhu, L.; Wang, H.; Li, G.; Chen, G. Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.05.14.594238
  • Mirlohi, M. S.; Pishbin, E.; Dezhkam, R.; Kiani, M. J.; Shamloo, A.; Salami, S. Innovative PNA-LB mediated allele-specific LAMP for KRAS mutation profiling on a compact lab-on-a-disc device. Talanta 2024, 276, 126224. doi:10.1016/j.talanta.2024.126224
  • Arjmand, F.; Tabassum, S.; Khan, H. Y. Combination Drug Strategies for Targeting Specific Biochemical Pathways for Superior Therapeutic Potency. Advances and Prospects of 3-d Metal-Based Anticancer Drug Candidates; Springer Nature Singapore, 2024; pp 203–218. doi:10.1007/978-981-97-0146-9_8
  • Westerlund, K.; Oroujeni, M.; Gestin, M.; Clinton, J.; Hani Rosly, A.; Tano, H.; Vorobyeva, A.; Orlova, A.; Eriksson Karlström, A.; Tolmachev, V. Shorter Peptide Nucleic Acid Probes Improve Affibody-Mediated Peptide Nucleic Acid-Based Pretargeting. ACS pharmacology & translational science 2024, 7, 1595–1611. doi:10.1021/acsptsci.4c00106
  • Ellenbroek, B. D.; Kahler, J. P.; Evers, S. R.; Pomplun, S. J. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angewandte Chemie (International ed. in English) 2024, 63, e202401704. doi:10.1002/anie.202401704
  • Ellenbroek, B. D.; Kahler, J. P.; Evers, S. R.; Pomplun, S. J. Synthetic Peptides: Promising Modalities for the Targeting of Disease‐Related Nucleic Acids. Angewandte Chemie 2024, 136. doi:10.1002/ange.202401704
Other Beilstein-Institut Open Science Activities