Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications

Nikita Brodyagin, Martins Katkevics, Venubabu Kotikam, Christopher A. Ryan and Eriks Rozners
Beilstein J. Org. Chem. 2021, 17, 1641–1688. https://doi.org/10.3762/bjoc.17.116

Cite the Following Article

Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications
Nikita Brodyagin, Martins Katkevics, Venubabu Kotikam, Christopher A. Ryan and Eriks Rozners
Beilstein J. Org. Chem. 2021, 17, 1641–1688. https://doi.org/10.3762/bjoc.17.116

How to Cite

Brodyagin, N.; Katkevics, M.; Kotikam, V.; Ryan, C. A.; Rozners, E. Beilstein J. Org. Chem. 2021, 17, 1641–1688. doi:10.3762/bjoc.17.116

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Everly, M. E.; Emehiser, R. G.; Hrdlicka, P. J. Recognition of mixed-sequence double-stranded DNA regions using chimeric Invader/LNA probes. Organic & biomolecular chemistry 2024. doi:10.1039/d4ob01403k
  • Lu, R.; Deng, L.; Lian, Y.; Ke, X.; Yang, L.; Xi, K.; Ong, A. A. L.; Chen, Y.; Zhou, H.; Meng, Z.; Lin, R.; Fan, S.; Liu, Y.; Toh, D.-F. K.; Zhan, X.; Krishna, M. S.; Patil, K. M.; Lu, Y.; Liu, Z.; Zhu, L.; Wang, H.; Li, G.; Chen, G. Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform. Cell Reports Physical Science 2024, 5, 102150. doi:10.1016/j.xcrp.2024.102150
  • Nazzal, H.; Gupta, M. K.; Fadila, A.; Yavin, E. A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base. Molecules (Basel, Switzerland) 2024, 29, 4136. doi:10.3390/molecules29174136
  • Todkari, I. A.; Chaudhary, P.; Kulkarni, M. J.; Ganesh, K. N. Supramolecular polyplexes from Janus peptide nucleic acids (bm-PNA-G5): self-assembled bm-PNA G-quadruplex and its tetraduplex with DNA. Organic & biomolecular chemistry 2024, 22, 6810–6821. doi:10.1039/d4ob00968a
  • Carson, L. M.; Watson, E. E. Peptide Nucleic Acids: From Origami to Editing. ChemPlusChem 2024, e202400305. doi:10.1002/cplu.202400305
  • Rahman, M. M.; Ryan, C. A.; Tessier, B. R.; Rozners, E. Peptide nucleic acids (PNAs) control function of SARS-CoV-2 frameshifting stimulatory element trough PNA-RNA-PNA triplex formation. Heliyon 2024, 10, e33914. doi:10.1016/j.heliyon.2024.e33914
  • Giancola, J. B.; Raines, R. T. Endosomolytic Peptides Enable the Cellular Delivery of Peptide Nucleic Acids. 2024. doi:10.1101/2024.06.18.599558
  • Mannully, S. T.; Mahajna, R.; Nazzal, H.; Maree, S.; Zheng, H.; Appella, D. H.; Reich, R.; Yavin, E. Detecting the FLJ22447 lncRNA in Ovarian Cancer with Cyclopentane-Modified FIT-PNAs (cpFIT-PNAs). Biomolecules 2024, 14, 609. doi:10.3390/biom14060609
  • Lu, R.; Deng, L.; Lian, Y.; Ke, X.; Yang, L.; Xi, K.; Lerk Ong, A. A.; Chen, Y.; Zhou, H.; Meng, Z.; Lin, R.; Fan, S.; Liu, Y.; Toh, D.-F. K.; Zhan, X.; Krishna, M. S.; Patil, K. M.; Lu, Y.; Liu, Z.; Zhu, L.; Wang, H.; Li, G.; Chen, G. Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.05.14.594238
  • Mirlohi, M. S.; Pishbin, E.; Dezhkam, R.; Kiani, M. J.; Shamloo, A.; Salami, S. Innovative PNA-LB mediated allele-specific LAMP for KRAS mutation profiling on a compact lab-on-a-disc device. Talanta 2024, 276, 126224. doi:10.1016/j.talanta.2024.126224
  • Arjmand, F.; Tabassum, S.; Khan, H. Y. Combination Drug Strategies for Targeting Specific Biochemical Pathways for Superior Therapeutic Potency. Advances and Prospects of 3-d Metal-Based Anticancer Drug Candidates; Springer Nature Singapore, 2024; pp 203–218. doi:10.1007/978-981-97-0146-9_8
  • Westerlund, K.; Oroujeni, M.; Gestin, M.; Clinton, J.; Hani Rosly, A.; Tano, H.; Vorobyeva, A.; Orlova, A.; Eriksson Karlström, A.; Tolmachev, V. Shorter Peptide Nucleic Acid Probes Improve Affibody-Mediated Peptide Nucleic Acid-Based Pretargeting. ACS pharmacology & translational science 2024, 7, 1595–1611. doi:10.1021/acsptsci.4c00106
  • Ellenbroek, B. D.; Kahler, J. P.; Evers, S. R.; Pomplun, S. J. Synthetic Peptides: Promising Modalities for the Targeting of Disease‐Related Nucleic Acids. Angewandte Chemie 2024, 136. doi:10.1002/ange.202401704
  • Ellenbroek, B. D.; Kahler, J. P.; Evers, S. R.; Pomplun, S. J. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angewandte Chemie (International ed. in English) 2024, 63, e202401704. doi:10.1002/anie.202401704
  • Aman, R.; Syed, M. M.; Saleh, A.; Melliti, F.; Gundra, S. R.; Wang, Q.; Marsic, T.; Mahas, A.; Mahfouz, M. M. Peptide nucleic acid-assisted generation of targeted double-stranded DNA breaks with T7 endonuclease I. Nucleic acids research 2024, 52, 3469–3482. doi:10.1093/nar/gkae148
  • Katkevics, M.; MacKay, J. A.; Rozners, E. Triplex-forming peptide nucleic acids as emerging ligands to modulate structure and function of complex RNAs. Chemical communications (Cambridge, England) 2024, 60, 1999–2008. doi:10.1039/d3cc05409h
  • Kumpina, I.; Loubidi, M.; Rozners, E. Comparison of 2-Aminopyridine and 4-Thiopseudisocytosine PNA Nucleobases for Hoogsteen Recognition of Guanosine in RNA. ACS omega 2024, 9, 7249–7254. doi:10.1021/acsomega.3c09775
  • Javanmard, Z.; Pourhajibagher, M.; Bahador, A. Characteristics and Applications of Peptide Nucleic Acid in the Treatment of Infectious Diseases and the Effect of Antimicrobial Photodynamic Therapy on Treatment Effectiveness. Infectious disorders drug targets 2024, 24, e240723219021. doi:10.2174/1871526523666230724120957
  • Sarkar, S.; Anderson, C. F.; Schneider, J. P. The Design of a Participatory Peptide Nucleic Acid Duplex Crosslinker to Enhance the Stiffness of Self‐Assembled Peptide Gels. Angewandte Chemie 2023, 136. doi:10.1002/ange.202313507
  • Sakar, S.; Anderson, C. F.; Schneider, J. P. The Design of a Participatory Peptide Nucleic Acid Duplex Crosslinker to Enhance the Stiffness of Self-Assembled Peptide Gels. Angewandte Chemie (International ed. in English) 2023, 63, e202313507. doi:10.1002/anie.202313507
Other Beilstein-Institut Open Science Activities