Heterologous biosynthesis of cotylenol and concise synthesis of fusicoccane diterpenoids

  1. ‡,1 ,
  2. ‡,2 ,
  3. ‡,1 ,
  4. 2 ,
  5. 2 ,
  6. 2 ,
  7. 2 and
  8. 1,3 ORCID Logo
1State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
2Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
3Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
  1. Corresponding author email
  2. ‡ Equal contributors
This article is part of the thematic issue "Concept-driven strategies in target-oriented synthesis".
Guest Editor: Y. Tang
Beilstein J. Org. Chem. 2025, 21, 1489–1495. https://doi.org/10.3762/bjoc.21.111
Received 30 Jan 2025, Accepted 15 Apr 2025, Published 21 Jul 2025
A non-peer-reviewed version of this article has been posted as a preprint doi:10.26434/chemrxiv-2024-d4lpr

Abstract

A novel strategy for the synthesis of fusicoccane diterpenoids is reported. By harnessing the biosynthetic pathways of brassicicenes and fusicoccins, cotylenol was produced in an engineered Aspergillus oryzae strain. We further achieved the concise synthesis of three fusicoccane diterpenoids, including alterbrassicicene E and brassicicenes A and R in 4 or 5 chemical steps from brassicicene I. This strategy lays the foundation for the preparation of fusicoccane diterpenoids and their analogues for biological studies.

Introduction

Fusicoccanes are a family of 5-8-5 tricyclic diterpenoid natural products that are produced by bacteria, fungi, algae, and plants (Figure 1a) . Fusicoccanes possess a broad range of biological activities, including anticancer, anti-inflammatory, antimicrobial, antiparasitic, and plant growth regulating activities. For instance, cotylenin A (1) and fusicoccin A (2) function as molecular glues to stabilize the interactions between 14-3-3 proteins and their binding partners in plant and animal cells . It has been reported that cotylenin A and its aglycone, cotylenol (3), induce differentiation in murine and human myeloid leukemia cells . Cotylenin A and fusicoccin A also act synergistically with interferon-α or rapamycin to induce apoptosis in cancer cell lines . However, cotylenin A cannot be produced by its natural source, Cladosporium sp. 501-7W, due to the loss of its ability to proliferate during preservation . The important biological activities and complex structures of fusicoccane diterpenoids have inspired several total syntheses, which range between 15 and 29 steps . Most of these synthetic approaches rely on similar strategies, i.e., coupling of the A ring and the C ring followed by the formation of the B ring. Additionally, the semisynthesis of analogues of 1 has been reported and led to the discovery of ISIR-050 (4), which shows higher activity than cotylenin A in cell growth inhibition assays and less toxicity in single-agent treatments . Recently, Jiang and Renata described a chemoenzymatic approach that combines the skeletal construction by chemical methods and enzymatic C–H oxidations . The synthesis employs a catalytic Nozaki–Hiyama–Kishi reaction and a one-pot Prins cyclization/transannular hydride transfer to construct the 5-8-5 tricyclic scaffold. Enzymatic oxidations were used to install the hydroxy group at the C-3 position. Ten fusicoccanes were synthesized in 8–13 steps each. Despite these efforts, a strategy with limited chemical transformations is highly desirable and should enable the discovery of new fusicoccane derivatives with improved biological activity.

[1860-5397-21-111-1]

Figure 1: Selected fusicoccane diterpenoids and overview of this study. (a) Representative members of the fusicoccane diterpenoid family. (b) This work: heterologous biosynthesis of cotylenol (3) in an engineered Aspergillus oryzae strain and concise synthesis of fusicoccane diterpenoids.

Inspired by the biosynthetic machinery of terpenoids, we have reported a hybrid synthetic strategy for accessing bioactive terpenoids by combining enzymatic terpene cyclization and chemical synthesis . Briefly, the carbon scaffolds are forged by terpene cyclases, followed by concise chemical transformations to yield the desired natural products. Here, we describe heterologous biosynthesis of cotylenol by engineering the biosynthetic pathway of brassicicenes in Aspergillus oryzae and harnessing the promiscuity of a cytochrome P450 from the biosynthesis of fusicoccin A (Figure 1b). A key intermediate, brassicicenes I (5), was further used to achieve the collective synthesis of alterbrassicicene E (6), brassicicenes A (7) and R (8).

Results and Discussion

Fusicoccanes feature a characteristic dicyclopenta[a,d]cyclooctane (5-8-5) ring system that is biosynthesized from geranylgeranyl pyrophosphate (GGPP) via class I terpene cyclization (Figure 2a). To date, two fusicoccadiene synthases have been identified by the analysis of the brassicicene biosynthesis-related gene cluster (BGC) in Alternaria brassicicola and Pseudocercospora fijiensis . The 5-8-5 tricyclic scaffold is transformed into various fusicoccane natural products catalyzed by P450s, dioxygenases, dehydrogenases, and reductases. Therefore, we propose to harness the biosynthetic pathway for brassicicenes, which share the same carbon skeleton and similar oxidation and unsaturation states as cotylenol and cotylenin A . In a previous study, Oikawa and co-workers reported the identification of brassicicene BGC in Pseudocercospora fijiensis . By heterologous expression of this BGC in Aspergillus oryzae, brassicicene I was produced by the transformant AO-bscABCDE at a titer of 5.5 mg/L. Recently, we identified a new BGC for brassicicenes, namely, abn, from the brassicicene-producing strain A. brassicicola XXC (Figure 2b) . We constructed an A. oryzae strain with the homologous gene abnABCDE. As expected, compound 5 was produced at a titer of 8 mg/L (Figure 2c). By co-fermenting with Amberlite XAD-16, an enhanced yield of 30 mg/L was achieved, thus allowing further transformation into other natural products.

[1860-5397-21-111-2]

Figure 2: Heterologous production of brassicicene I in an engineered A. oryzae strain. (a) Biosynthesis of fusicoccin A in Phomopsis (Fusicoccum) amygdali. (b) Brassicicene BGC in A. brassicicola XXC. (c) Heterologous production of brassicicene I (5) in an engineered AO strain.

We next carried out the formal synthesis of cotylenin A and cotylenol (Figure 3a). Oxidation of brassicicene I with Dess–Martin reagent afforded intermediate 9 in 92% yield. The tertiary hydroxy group of compound 9 was further protected with a TMS group to provide compound 10 in 90% yield, a key intermediate in the synthesis of cotylenol and cotylenin A by Nakada and co-workers . However, installing the C9 hydroxy group requires the use of stoichiometric MoOPH , which raises toxicity and safety issues. Therefore, we sought an enzymatic method to selectively oxidize 5 at the C9 position. Dairi and co-workers reported that Orf7 oxidizes compound 11 at the C9 position in the biosynthesis of fusicoccin A (Figure 3b) . Given the structural similarities between compound 5 and compound 11, we hypothesized that Orf7 might also catalyze the hydroxylation of compound 5 at C9. Hence, we fed an A. oryzae strain that expressed the orf7 gene with compound 5. To our delight, compound 3 was obtained successfully (Figure 3c). To stably produce 3 by fermentation, we constructed an A. oryzae strain that integrates abnABCDE with orf7, achieving a yield of 60 mg/kg rice through rice fermentation.

[1860-5397-21-111-3]

Figure 3: Synthesis of cotylenol (3). (a) Synthesis of Nakada’s intermediate 10 from 5. (b) Orf7 catalyzes the oxidation of 11 in the biosynthesis of fusicoccin A (2). (c) LC–MS analysis of the production of 3 through AO-abnABCDE+orf7 heterologous expression or AO-orf7 biotransformation.

We next targeted alterbrassicicene E (6), brassicicenes A (7) and R (8) (Scheme 1). The secondary hydroxy group of brassicicene I was selectively TBS-protected in the presence of TBSOTf and 2,6-lutidine to give compound 13 in 93% yield. Then, compound 13 underwent oxidative rearrangement with PCC to afford ketone 14 in 61% yield. Under Luche reduction conditions, compound 15 and its diastereomer were obtained in a total yield of 90% at a ratio of 1:0.7. To improve the diastereoselectivity, we examined other reduction conditions and found that ʟ-Selectride afforded compound 15 in 90% yield with a dr of 9:1. Upon desilylation with TBAF, compound 15 was converted into alterbrassicicene E (6) in 80% yield. To synthesize brassicicenes A (7) and R (8), the tertiary hydroxy group of compound 13 was protected with a TES group to furnish compound 16 in 89% yield. By screening several conditions, we found that allylic oxidation of compound 16 could be achieved in the presence of chromium trioxide–3,5-dimethylpyrazole complex to provide compound 17 in 76% yield. After deprotection of the TBS and TES groups with TBAF, brassicicene A (7) was obtained in 75% yield. Compound 17 was subjected to α-hydroxylation from the less-hindered convex face using Davis’s oxaziridine , furnishing intermediate 18 in 72% yield. After deprotection of the TBS and TES groups, brassicicene R (8) was obtained in 70% yield. Therefore, alterbrassicicene E (6) and brassicicenes A (7) and R (8) were synthesized from brassicicene I over 4 or 5 chemical steps.

[1860-5397-21-111-i1]

Scheme 1: Synthesis of alterbrassicicene E (6) and brassicicenes A (7) and R (8) from brassicicene I (5).

Conclusion

In summary, the diverse biological activities and complex structures of fusicoccane diterpenoids have stimulated multiple elegant chemical syntheses. In contrast to these approaches, we harnessed the biosynthetic machinery of brassicicenes to produce brassicicene I in an engineered A. oryzae strain. Brassicicene I was further oxidized by a cytochrome P450 from the biosynthesis of fusicoccin A, thus leading to total biosynthesis of cotylenol in A. oryzae. Three fusicoccane diterpenoids, including alterbrassicicene E and brassicicenes A and R, were efficiently synthesized from brassicicene I in 4 or 5 chemical steps. This work lays the foundation for the preparation of fusicoccane natural products and exploration of their biological activities.

Supporting Information

Supporting Information File 1: Experimental data and copies of spectra.
Format: PDF Size: 3.2 MB Download

Acknowledgements

The authors thank Medical sub-center of analytical and testing center, Huazhong University of Science and Technology for measuring NMR spectroscopic data. The authors are very grateful to Professor Hideaki Oikawa (Hokkaido University, Sapporo, Japan) for providing A. oryzae NSAR1 heterologous expression system.

Funding

This work was financially supported by the National Key R&D Program of China (2021YFA0910500), the National Natural Science Foundation of China (22277035, 32000045, and 81973205), the Program for the National Natural Science Foundation for Distinguished Young Scholars (81725021), the Innovative Research Groups of the National Natural Science Foundation of China (81721005), the Fundamental Research Funds for the Central Universities (2020kfyXJJS083), the Sino-German Center for Research Promotion (M-0477), Key-Area Research and Development Program of Guangdong Province (2020B0303070002) and Shenzhen Science and Technology Program (KQTD20170330155106581).

Data Availability Statement

All data that supports the findings of this study is available in the published article and/or the supporting information of this article.

References

  1. de Boer, A. H.; de Vries-van Leeuwen, I. J. Trends Plant Sci. 2012, 17, 360–368. doi:10.1016/j.tplants.2012.02.007
    Return to citation in text: [1]
  2. Ballio, A.; Chain, E. B.; De Leo, P.; Erlanger, B. F.; Mauri, M.; Tonolo, A. Nature 1964, 203, 297. doi:10.1038/203297a0
    Return to citation in text: [1]
  3. Sassa, T. Agric. Biol. Chem. 1971, 35, 1415–1418. doi:10.1271/bbb1961.35.1415
    Return to citation in text: [1]
  4. Sassa, T.; Ooi, T.; Nukina, M.; Ikeda, M.; Kato, N. Biosci., Biotechnol., Biochem. 1998, 62, 1815–1818. doi:10.1271/bbb.62.1815
    Return to citation in text: [1]
  5. Tang, Y.; Xue, Y.; Du, G.; Wang, J.; Liu, J.; Sun, B.; Li, X.-N.; Yao, G.; Luo, Z.; Zhang, Y. Angew. Chem., Int. Ed. 2016, 55, 4069–4073. doi:10.1002/anie.201600313
    Return to citation in text: [1]
  6. Li, F.; Lin, S.; Zhang, S.; Pan, L.; Chai, C.; Su, J.-C.; Yang, B.; Liu, J.; Wang, J.; Hu, Z.; Zhang, Y. J. Nat. Prod. 2020, 83, 1931–1938. doi:10.1021/acs.jnatprod.0c00165
    Return to citation in text: [1]
  7. Zhou, P.; Zhang, X.; Dai, C.; Yan, S.; Wei, M.; Feng, W.; Li, Q.; Liu, J.; Zhu, H.; Hu, Z.; Chen, C.; Zhang, Y. J. Org. Chem. 2022, 87, 7333–7341. doi:10.1021/acs.joc.2c00528
    Return to citation in text: [1]
  8. Ohkanda, J. Chem. Lett. 2021, 50, 57–67. doi:10.1246/cl.200670
    Return to citation in text: [1]
  9. Sengupta, A.; Liriano, J.; Bienkiewicz, E. A.; Miller, B. G.; Frederich, J. H. ACS Omega 2020, 5, 25029–25035. doi:10.1021/acsomega.0c01454
    Return to citation in text: [1]
  10. Molzan, M.; Kasper, S.; Röglin, L.; Skwarczynska, M.; Sassa, T.; Inoue, T.; Breitenbuecher, F.; Ohkanda, J.; Kato, N.; Schuler, M.; Ottmann, C. ACS Chem. Biol. 2013, 8, 1869–1875. doi:10.1021/cb4003464
    Return to citation in text: [1]
  11. Zheng, D.; Han, L.; Qu, X.; Chen, X.; Zhong, J.; Bi, X.; Liu, J.; Jiang, Y.; Jiang, C.; Huang, X. J. Nat. Prod. 2017, 80, 837–844. doi:10.1021/acs.jnatprod.6b00676
    Return to citation in text: [1]
  12. Kim, S.; Shin, D.-S.; Lee, T.; Oh, K.-B. J. Nat. Prod. 2004, 67, 448–450. doi:10.1021/np030384h
    Return to citation in text: [1]
  13. Asahi, K.-i.; Honma, Y.; Hazeki, K.; Sassa, T.; Kubohara, Y.; Sakurai, A.; Takahashi, N. Biochem. Biophys. Res. Commun. 1997, 238, 758–763. doi:10.1006/bbrc.1997.7385
    Return to citation in text: [1]
  14. Honma, Y.; Kasukabe, T.; Yamori, T.; Kato, N.; Sassa, T. Gynecol. Oncol. 2005, 99, 680–688. doi:10.1016/j.ygyno.2005.07.015
    Return to citation in text: [1]
  15. de Vries-van Leeuwen, I. J.; Kortekaas-Thijssen, C.; Nzigou Mandouckou, J. A.; Kas, S.; Evidente, A.; de Boer, A. H. Cancer Lett. 2010, 293, 198–206. doi:10.1016/j.canlet.2010.01.009
    Return to citation in text: [1]
  16. Kasukabe, T.; Okabe‐Kado, J.; Honma, Y. Cancer Sci. 2008, 99, 1693–1698. doi:10.1111/j.1349-7006.2008.00867.x
    Return to citation in text: [1]
  17. Ono, Y.; Minami, A.; Noike, M.; Higuchi, Y.; Toyomasu, T.; Sassa, T.; Kato, N.; Dairi, T. J. Am. Chem. Soc. 2011, 133, 2548–2555. doi:10.1021/ja107785u
    Return to citation in text: [1]
  18. Liu, Y.; Hong, R. Cell Rep. Phys. Sci. 2024, 5, 102141. doi:10.1016/j.xcrp.2024.102141
    Return to citation in text: [1]
  19. Kato, N.; Okamoto, H.; Takeshita, H. Tetrahedron 1996, 52, 3921–3932. doi:10.1016/s0040-4020(96)00059-2
    Return to citation in text: [1]
  20. Williams, D. R.; Robinson, L. A.; Nevill, C. R.; Reddy, J. P. Angew. Chem., Int. Ed. 2007, 46, 915–918. doi:10.1002/anie.200603853
    Return to citation in text: [1]
  21. Uwamori, M.; Osada, R.; Sugiyama, R.; Nagatani, K.; Nakada, M. J. Am. Chem. Soc. 2020, 142, 5556–5561. doi:10.1021/jacs.0c01774
    Return to citation in text: [1] [2]
  22. Chen, B.; Wu, Q.; Xu, D.; Zhang, X.; Ding, Y.; Bao, S.; Zhang, X.; Wang, L.; Chen, Y. Angew. Chem., Int. Ed. 2022, 61, e202117476. doi:10.1002/anie.202117476
    Return to citation in text: [1]
  23. Wang, Y.-Q.; Xu, K.; Min, L.; Li, C.-C. J. Am. Chem. Soc. 2022, 144, 10162–10167. doi:10.1021/jacs.2c04633
    Return to citation in text: [1]
  24. Sims, N. J.; Bonnet, W. C.; Lawson, D. M.; Wood, J. L. J. Am. Chem. Soc. 2023, 145, 37–40. doi:10.1021/jacs.2c12275
    Return to citation in text: [1]
  25. Chen, B.; Yang, Y.; Zhang, X.; Xu, D.; Sun, Y.; Chen, Y.; Wang, L. Org. Lett. 2023, 25, 8570–8574. doi:10.1021/acs.orglett.3c03355
    Return to citation in text: [1] [2]
  26. Xie, S.; Chen, Y.; Zhang, Y.; Zhang, Z.; Hu, X.; Yan, C.; Xu, J. Cell Rep. Phys. Sci. 2024, 5, 101855. doi:10.1016/j.xcrp.2024.101855
    Return to citation in text: [1]
  27. Inoue, T.; Higuchi, Y.; Yoneyama, T.; Lin, B.; Nunomura, K.; Honma, Y.; Kato, N. Bioorg. Med. Chem. Lett. 2018, 28, 646–650. doi:10.1016/j.bmcl.2018.01.030
    Return to citation in text: [1]
  28. Ohkanda, J.; Kusumoto, A.; Punzalan, L.; Masuda, R.; Wang, C.; Parvatkar, P.; Akase, D.; Aida, M.; Uesugi, M.; Higuchi, Y.; Kato, N. Chem. – Eur. J. 2018, 24, 16066–16071. doi:10.1002/chem.201804428
    Return to citation in text: [1]
  29. Jiang, Y.; Renata, H. Nat. Chem. 2024, 16, 1531–1538. doi:10.1038/s41557-024-01533-w
    Return to citation in text: [1]
  30. You, Y.; Zhang, X.-J.; Xiao, W.; Kunthic, T.; Xiang, Z.; Xu, C. Chem. Sci. 2024, 15, 19307–19314. doi:10.1039/d4sc06060a
    Return to citation in text: [1]
  31. Xiao, W.; Wang, S.-J.; Yu, M.-Z.; Zhang, X.-J.; Xiang, Z. Org. Biomol. Chem. 2023, 21, 5527–5531. doi:10.1039/d3ob00206c
    Return to citation in text: [1]
  32. Mou, S.-B.; Xiao, W.; Wang, H.-Q.; Chen, K.-Y.; Xiang, Z. Org. Lett. 2021, 23, 400–404. doi:10.1021/acs.orglett.0c03894
    Return to citation in text: [1]
  33. Mou, S.-B.; Xiao, W.; Wang, H.-Q.; Wang, S.-J.; Xiang, Z. Org. Lett. 2020, 22, 1976–1979. doi:10.1021/acs.orglett.0c00325
    Return to citation in text: [1]
  34. Toyomasu, T.; Tsukahara, M.; Kaneko, A.; Niida, R.; Mitsuhashi, W.; Dairi, T.; Kato, N.; Sassa, T. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3084–3088. doi:10.1073/pnas.0608426104
    Return to citation in text: [1]
  35. Minami, A.; Tajima, N.; Higuchi, Y.; Toyomasu, T.; Sassa, T.; Kato, N.; Dairi, T. Bioorg. Med. Chem. Lett. 2009, 19, 870–874. doi:10.1016/j.bmcl.2008.11.108
    Return to citation in text: [1]
  36. Guan, Z.; Yao, N.; Yuan, W.; Li, F.; Xiao, Y.; Rehmutulla, M.; Xie, Y.; Chen, C.; Zhu, H.; Zhou, Y.; Tong, Q.; Xiang, Z.; Ye, Y.; Zhang, Y. Chem. Sci. 2025, 16, 867–875. doi:10.1039/d4sc05963h
    In parallel, we identified a biosynthetic pathway for cotylenol, cotylenins, from Talaromyces adpressus.
    Return to citation in text: [1]
  37. Tazawa, A.; Ye, Y.; Ozaki, T.; Liu, C.; Ogasawara, Y.; Dairi, T.; Higuchi, Y.; Kato, N.; Gomi, K.; Minami, A.; Oikawa, H. Org. Lett. 2018, 20, 6178–6182. doi:10.1021/acs.orglett.8b02654
    Return to citation in text: [1]
  38. Yuan, W.; Li, F.; Chen, Z.; Xu, Q.; Guan, Z.; Yao, N.; Hu, Z.; Liu, J.; Zhou, Y.; Ye, Y.; Zhang, Y. Chin. Chem. Lett. 2024, 35, 108788. doi:10.1016/j.cclet.2023.108788
    Return to citation in text: [1]
  39. Vedejs, E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1978, 43, 188–196. doi:10.1021/jo00396a002
    Return to citation in text: [1]
  40. Noike, M.; Ono, Y.; Araki, Y.; Tanio, R.; Higuchi, Y.; Nitta, H.; Hamano, Y.; Toyomasu, T.; Sassa, T.; Kato, N.; Dairi, T. PLoS One 2012, 7, e42090. doi:10.1371/journal.pone.0042090
    Return to citation in text: [1]
  41. Salmond, W. G.; Barta, M. A.; Havens, J. L. J. Org. Chem. 1978, 43, 2057–2059. doi:10.1021/jo00404a049
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities