Multicomponent reaction access to complex quinolines via oxidation of the Povarov adducts

Esther Vicente-García, Rosario Ramón, Sara Preciado and Rodolfo Lavilla
Beilstein J. Org. Chem. 2011, 7, 980–987. https://doi.org/10.3762/bjoc.7.110

Supporting Information

Supporting information features the characterization data of compounds 18, 19, 21 and 22, copies of their 1H NMR and 13C NMR spectra, and the particle size analyses of MnO2 samples.

Supporting Information File 1: Experimental details.
Format: PDF Size: 1.1 MB Download

Cite the Following Article

Multicomponent reaction access to complex quinolines via oxidation of the Povarov adducts
Esther Vicente-García, Rosario Ramón, Sara Preciado and Rodolfo Lavilla
Beilstein J. Org. Chem. 2011, 7, 980–987. https://doi.org/10.3762/bjoc.7.110

How to Cite

Vicente-García, E.; Ramón, R.; Preciado, S.; Lavilla, R. Beilstein J. Org. Chem. 2011, 7, 980–987. doi:10.3762/bjoc.7.110

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhu, C.; Nurko, M.; Day, C. S.; Lukesh, J. C. Arylselenyl Radical-Mediated Cyclization of N-(2-Alkynyl)anilines: Access to 3-Selenylquinolines. The Journal of organic chemistry 2022, 87, 8390–8395. doi:10.1021/acs.joc.2c00282
  • Rani, V. A.; Kumari, Y. B. DBU(OAc)–TBAB-Mediated One-Pot Three-component Synthesis of 1H-Imidazol-5(4H)-one Derivatives. Russian Journal of Organic Chemistry 2022, 58, 352–355. doi:10.1134/s1070428022030125
  • de Fátima, Â.; Fernandes, S. A.; Ferreira de Paiva, W.; de Freitas Rego, Y. The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines. Synthesis 2022, 54, 3162–3179. doi:10.1055/a-1794-8355
  • Soni, R.; Soman, S. S. Metal Free Synthesis of Coumarin Containing Hetero[n]helicene like Molecules with TICT and AIE Properties. Asian Journal of Organic Chemistry 2022, 11. doi:10.1002/ajoc.202100770
  • Lavilla, R.; Ghashghaei, O.; Rodríguez, P. N. Development of Heterocyclic Multicomponent Reactions through Guided Exploration: Direct, Reasonable and Unpredictable Processes. Synlett 2022, 33, 822–835. doi:10.1055/a-1750-3185
  • Vil', V. A.; Grishin, S. S.; Baberkina, E. P.; Alekseenko, A. L.; Glinushkin, A. P.; Kovalenko, A. E.; Terent'ev, A. O. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza‐Diels‐Alder Cycloaddition. Advanced Synthesis & Catalysis 2022, 364, 1098–1108. doi:10.1002/adsc.202101355
  • Oliveras, J. M.; de la Bellacasa, R. P.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J. I. 1,6-Naphthyridin-2(1H)-ones: Synthesis and Biomedical Applications. Pharmaceuticals (Basel, Switzerland) 2021, 14, 1029. doi:10.3390/ph14101029
  • Keri, R. S.; Patil, M. R.; Budagumpi, S.; Sasidhar, B. S. An efficient, multicomponent synthesis of aminoalkylnaphthols via Betti reaction using ZSM-5 as a recoverable and reusable catalyst. Applied Organometallic Chemistry 2021, 35. doi:10.1002/aoc.6316
  • Jayaraj, S.; Badu-Tawiah, A. K. N-Substituted Auxiliaries for Aerobic Dehydrogenation of Tetrahydro-isoquinoline: A Theory-Guided Photo-Catalytic Design. Scientific reports 2019, 9, 11280. doi:10.1038/s41598-019-47735-y
  • Muthukrishnan, I.; Sridharan, V.; Menéndez, J. C. Progress in the Chemistry of Tetrahydroquinolines. Chemical reviews 2019, 119, 5057–5191. doi:10.1021/acs.chemrev.8b00567
  • Shelkovnikov, V. V.; Kargapolova, I. Y.; Korotaev, S. V.; Orlova, N. A.; Rybalova, T. V.; Chuikov, I. P. Three-color luminescent transformation of the julolidine pyrylo/pyridocyanine dyes in the adsorbed state. Journal of Photochemistry and Photobiology A: Chemistry 2019, 375, 181–190. doi:10.1016/j.jphotochem.2019.02.022
  • Smietana, M.; Benedetti, E.; Bressy, C.; Arseniyadis, S. Efficiency in Natural Product Total Synthesis; Wiley, 2018; pp 319–344. doi:10.1002/9781118940228.ch8
  • Gómez, C. M. M.; Marsiglia, M.; Escarsena, R.; del Olmo, E.; Kouznetsov, V. V. Synthesis of 2,3-di(ω-hydroxyalkyl)quinolines from anilines and cyclic enols using sequential cycloaddition/aromatization reactions. Tetrahedron Letters 2018, 59, 22–25. doi:10.1016/j.tetlet.2017.11.034
  • Vasconcelos, S. N. S.; da Silva, V. H. M.; Braga, A. A. C.; Shamim, A.; Souza, F. B.; Pimenta, D. C.; Stefani, H. A. 3‐Alkenyltyrosines Accessed by Suzuki–Miyaura Coupling: A Key Intermediate in the Synthesis and Mechanistic Study of Povarov Multicomponent Reactions. Asian Journal of Organic Chemistry 2017, 6, 913–920. doi:10.1002/ajoc.201700154
  • Wan, J.-P.; Jing, Y.; Wei, L. Branched C=C and C−N Bond Cleavage on Enaminones toward the Synthesis of 3‐Acyl Quinolines. Asian Journal of Organic Chemistry 2017, 6, 666–668. doi:10.1002/ajoc.201700116
  • Brown, C. E.; McNulty, J.; Bordon, C.; Yolken, R.; Jones-Brando, L. Enol ethers as carbonyl surrogates in a modification of the Povarov synthesis of 3-aryl quinolines and their anti-Toxoplasma activity. Organic & biomolecular chemistry 2016, 14, 5951–5955. doi:10.1039/c6ob01083k
  • Bhupathi, R.; Madhu, B.; Devi, B. R.; Reddy, C. V. R.; Dubey, P. K. DBU acetate mediated: one‐pot multi component syntheses of dihydropyrano[3,2‐c]quinolones. Journal of Heterocyclic Chemistry 2015, 53, 1911–1916. doi:10.1002/jhet.2506
  • Mordhorst, T.; Awal, S.; Jordan, S.; Petters, C.; Sartoris, L.; Dringen, R.; Bickmeyer, U. The Chemically Synthesized Ageladine A-Derivative LysoGlow84 Stains Lysosomes in Viable Mammalian Brain Cells and Specific Structures in the Marine Flatworm Macrostomum lignano. Marine drugs 2015, 13, 920–935. doi:10.3390/md13020920
  • Di Pietro, O.; Pérez-Areales, F. J.; Juárez-Jiménez, J.; Espargaró, A.; Clos, M. V.; Pérez, B.; Lavilla, R.; Sabaté, R.; Luque, F. J.; Muñoz-Torrero, D. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies. European journal of medicinal chemistry 2014, 84, 107–117. doi:10.1016/j.ejmech.2014.07.021
  • Ahmed, A.; Dhara, S.; Singha, R.; Nuree, Y.; Sarkar, P.; Ray, J. K. Palladium catalyzed one-pot synthesis of 2-(pyridin-4-yl) quinolines via a multicomponent unprecedented reaction of pyridine-4-carbaldehyde, 2-iodoaniline and triethylamine. RSC Adv. 2014, 4, 53137–53141. doi:10.1039/c4ra08624d
Other Beilstein-Institut Open Science Activities