Supporting Information
Supporting information is available, featuring the synthetic procedures and spectral data for compounds 9, 10, 17–22.
Supporting Information File 1: Experimental part. | ||
Format: PDF | Size: 153.3 KB | Download |
Cite the Following Article
Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues
Xu-Wen Li, Jennifer Herrmann, Yi Zang, Philippe Grellier, Soizic Prado, Rolf Müller and Bastien Nay
Beilstein J. Org. Chem. 2013, 9, 1551–1558.
https://doi.org/10.3762/bjoc.9.176
How to Cite
Li, X.-W.; Herrmann, J.; Zang, Y.; Grellier, P.; Prado, S.; Müller, R.; Nay, B. Beilstein J. Org. Chem. 2013, 9, 1551–1558. doi:10.3762/bjoc.9.176
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Prenzel, T.; Schwarz, N.; Hammes, J.; Krähe, F.; Pschierer, S.; Winter, J.; Gálvez-Vázquez, M. d. J.; Schollmeyer, D.; Waldvogel, S. R. Highly Selective Electrosynthesis of 1H-1-Hydroxyquinol-4-ones-Synthetic Access to Versatile Natural Antibiotics. Organic process research & development 2024, 28, 3922–3928. doi:10.1021/acs.oprd.4c00337
- Seitz, C.; Ahn, S.-H.; Wei, H.; Kyte, M.; Cook, G. M.; Krause, K. L.; McCammon, J. A. Targeting Tuberculosis: Novel Scaffolds for Inhibiting Cytochrome bd Oxidase. Journal of chemical information and modeling 2024, 64, 5232–5241. doi:10.1021/acs.jcim.4c00344
- Saha, P.; Das, S.; Indurthi, H. K.; Kumar, R.; Roy, A.; Kalia, N. P.; Sharma, D. K. Cytochrome bd oxidase: an emerging anti-tubercular drug target. RSC medicinal chemistry 2024, 15, 769–787. doi:10.1039/d3md00587a
- Kruth, S.; Nett, M. Aurachins, Bacterial Antibiotics Interfering with Electron Transport Processes. Antibiotics (Basel, Switzerland) 2023, 12, 1067. doi:10.3390/antibiotics12061067
- Kruth, S.; Zimmermann, C. J.-M.; Kuhr, K.; Hiller, W.; Lütz, S.; Pietruszka, J.; Kaiser, M.; Nett, M. Generation of Aurachin Derivatives by Whole-Cell Biotransformation and Evaluation of Their Antiprotozoal Properties. Molecules (Basel, Switzerland) 2023, 28, 1066. doi:10.3390/molecules28031066
- Jeffreys, L. N.; Ardrey, A.; Hafiz, T. A.; Dyer, L.-A.; Warman, A. J.; Mosallam, N.; Nixon, G. L.; Fisher, N. E.; Hong, W. D.; Leung, S. C.; Aljayyoussi, G.; Bibby, J.; Almeida, D. V.; Converse, P. J.; Fotouhi, N.; Berry, N. G.; Nuermberger, E. L.; Upton, A. M.; O'Neill, P. M.; Ward, S. A.; Biagini, G. A. Identification of 2-Aryl-Quinolone Inhibitors of Cytochrome bd and Chemical Validation of Combination Strategies for Respiratory Inhibitors against Mycobacterium tuberculosis. ACS infectious diseases 2023, 9, 221–238. doi:10.1021/acsinfecdis.2c00283.s001
- Zhou, Y.; Shao, M.; Wang, W.; Cheung, C.-Y.; Wu, Y.; Yu, H.; Hu, X.; Cook, G. M.; Gong, H.; Lu, X. Discovery of 1-hydroxy-2-methylquinolin-4(1H)-one derivatives as new cytochrome bd oxidase inhibitors for tuberculosis therapy. European journal of medicinal chemistry 2022, 245, 114896. doi:10.1016/j.ejmech.2022.114896
- Kruth, S.; Schibajew, L.; Nett, M. Biocatalytic production of the antibiotic aurachin D in Escherichia coli. AMB Express 2022, 12, 138. doi:10.1186/s13568-022-01478-8
- Lawer, A.; Tyler, C.; Hards, K.; Keighley, L. M.; Cheung, C.-Y.; Kierek, F.; Su, S.; Matikonda, S. S.; McInnes, T.; Tyndall, J. D. A.; Krause, K. L.; Cook, G. M.; Gamble, A. B. Synthesis and Biological Evaluation of Aurachin D Analogues as Inhibitors of Mycobacterium tuberculosis Cytochrome bd Oxidase. ACS medicinal chemistry letters 2022, 13, 1663–1669. doi:10.1021/acsmedchemlett.2c00401
- Bader, C. D.; Panter, F.; Garcia, R.; Tchesnokov, E. P.; Haid, S.; Walt, C.; Spröer, C.; Kiefer, A. F.; Götte, M.; Overmann, J.; Pietschmann, T.; Müller, R. Sandacrabins - Structurally Unique Antiviral RNA Polymerase Inhibitors from a Rare Myxobacterium. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202104484. doi:10.1002/chem.202104484
- Silva, V. L. M.; Pinto, D. C. G. A.; Santos, C. M. M.; Rocha, D. H. A. 15.4.5 Quinolinones and Related Systems (Update 2022). Knowledge Updates 2022/3; Georg Thieme Verlag KG, 2022. doi:10.1055/sos-sd-115-01218
- Radloff, M.; Elamri, I.; Grund, T. N.; Witte, L. F.; Hohmann, K. F.; Nakagaki, S.; Goojani, H. G.; Nasiri, H.; Hideto Miyoshi; Bald, D.; Xie, H.; Sakamoto, J.; Schwalbe, H.; Safarian, S. Short-chain aurachin D derivatives are selective inhibitors of E. coli cytochrome bd-I and bd-II oxidases. Scientific reports 2021, 11, 23852. doi:10.1038/s41598-021-03288-7
- Speicher, A.; Stief, L. Setup of 4-Prenylated Quinolines through Suzuki-Miyaura Coupling for the Synthesis of Aurachins A and B. Advanced Synthesis & Catalysis 2021, 364, 158–164. doi:10.1002/adsc.202100884
- Malík, I.; Čižmárik, J.; Kováč, G.; Pecháčová, M.; Hudecova, L. Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon?. Ceska a Slovenska farmacie : casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti 2021, 70, 164–171. doi:10.5817/csf2021-5-164
- Ronzon, Q.; Zhang, W.; Casaretto, N.; Mouray, E.; Florent, I.; Nay, B. Programmed Multiple C-H Bond Functionalization of the Privileged 4-hydroxyquinoline Template. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 7764–7772. doi:10.1002/chem.202100929
- Asseri, A. H.; Godoy-Hernandez, A.; Goojani, H. G.; Lill, H.; Sakamoto, J.; McMillan, D. G. G.; Bald, D. Cardiolipin enhances the enzymatic activity of cytochrome bd and cytochrome bo 3 solubilized in dodecyl-maltoside. Scientific reports 2021, 11, 8006. doi:10.1038/s41598-021-87354-0
- Wicker, G.; Schoch, R.; Paradies, J. Diastereoselective Synthesis of Dihydro-quinolin-4-ones by a Borane-Catalyzed Redox-Neutral endo-1,7-Hydride Shift. Organic letters 2021, 23, 3626–3630. doi:10.1021/acs.orglett.1c01018
- Hasenoehrl, E. J.; Wiggins, T. J.; Berney, M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Frontiers in cellular and infection microbiology 2021, 10, 611683. doi:10.3389/fcimb.2020.611683
- De, S. K. doi:10.1002/9783527828166.ch10
- Lee, B. S.; Hards, K.; Engelhart, C. A.; Hasenoehrl, E. J.; Kalia, N. P.; Mackenzie, J. S.; Sviriaeva, E. N.; Chong, S. S. M.; Manimekalai, M. S. S.; Koh, V. H. Q.; Chan, J.; Xu, J.; Alonso, S.; Miller, M. J.; Steyn, A. J. C.; Grüber, G.; Schnappinger, D.; Berney, M.; Cook, G. M.; Moraski, G. C.; Pethe, K. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO molecular medicine 2020, 13, e13207. doi:10.15252/emmm.202013207