The regulation and biosynthesis of antimycins

Ryan F. Seipke and Matthew I. Hutchings
Beilstein J. Org. Chem. 2013, 9, 2556–2563. https://doi.org/10.3762/bjoc.9.290

Cite the Following Article

The regulation and biosynthesis of antimycins
Ryan F. Seipke and Matthew I. Hutchings
Beilstein J. Org. Chem. 2013, 9, 2556–2563. https://doi.org/10.3762/bjoc.9.290

How to Cite

Seipke, R. F.; Hutchings, M. I. Beilstein J. Org. Chem. 2013, 9, 2556–2563. doi:10.3762/bjoc.9.290

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Giordano, A. L. P. L.; Rodrigues, M. V. N.; Dos Santos, K. G. A.; Legabão, B. C.; Pontes, L.; de Angelis, D. A.; Garboggini, F. F.; Schreiber, A. Z. Enhancing Antifungal Drug Discovery Through Co-Culture with Antarctic Streptomyces albidoflavus Strain CBMAI 1855. International journal of molecular sciences 2024, 25, 12744. doi:10.3390/ijms252312744
  • Grundmann, C. O.; Guzman, J.; Vilcinskas, A.; Pupo, M. T. The insect microbiome is a vast source of bioactive small molecules. Natural product reports 2024, 41, 935–967. doi:10.1039/d3np00054k
  • Nunes, P. R.; Oliveira, P. F.; Rebelo, I.; Sandrim, V. C.; Alves, M. G. Relevance of real-time analyzers to determine mitochondrial quality in endothelial cells and oxidative stress in preeclampsia. Vascular pharmacology 2024, 155, 107372. doi:10.1016/j.vph.2024.107372
  • Augustijn, H. E.; Karapliafis, D.; Joosten, K. M. M.; Rigali, S.; van Wezel, G. P.; Medema, M. H. LogoMotif: A Comprehensive Database of Transcription Factor Binding Site Profiles in Actinobacteria. Journal of molecular biology 2024, 436, 168558. doi:10.1016/j.jmb.2024.168558
  • Augustijn, H. E.; Karapliafis, D.; Joosten, K.; Rigali, S.; van Wezel, G. P.; Medema, M. H. LogoMotif: a comprehensive database of transcription factor binding site profiles in Actinobacteria. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.02.28.582527
  • Sone, K.; Sakamaki, Y.; Hirose, S.; Inagaki, M.; Tachikawa, M.; Yoshino, D.; Funamoto, K. Hypoxia suppresses glucose-induced increases in collective cell migration in vascular endothelial cell monolayers. Scientific reports 2024, 14, 5164. doi:10.1038/s41598-024-55706-1
  • Dong, Y.; Li, B.; Yin, M.-X.; Liu, Z.; Niu, Y.; Wu, Q.-Y.; Zhu, X.-L.; Yang, G.-F. The Interaction Mechanism of Picolinamide Fungicide Targeting on the Cytochrome bc1 Complex and Its Structural Modification. Journal of agricultural and food chemistry 2024, 72, 3755–3762. doi:10.1021/acs.jafc.3c05982
  • Diabankana, R. G. C.; Frolov, M.; Keremli, S.; Validov, S. Z.; Afordoanyi, D. M. Genomic Insights into the Microbial Agent Streptomyces albidoflavus MGMM6 for Various Biotechnology Applications. Microorganisms 2023, 11, 2872. doi:10.3390/microorganisms11122872
  • DiDonato, N.; Rivas-Ubach, A.; Kew, W.; Clendinen, C.; Sokol, N.; Kyle, J. E.; Martínez, C. E.; Foley, M. M.; Tolić, N.; Pett-Ridge, J.; Paša-Tolić, L. Improved characterization of soil organic matter by integrating FTICR-MS, liquid chromatography tandem mass spectrometry and molecular networking: a case study of root litter decay under drought conditions. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.06.20.545455
  • Watermann, P.; Dringen, R. β-lapachone-mediated WST1 Reduction as Indicator for the Cytosolic Redox Metabolism of Cultured Primary Astrocytes. Neurochemical research 2023, 48, 2148–2160. doi:10.1007/s11064-023-03878-z
  • Kim, Y. S.; Umurzokov, M.; Cho, K. M.; Choi, J. S.; Park, K. W. Insecticidal characteristics and structural identification of the potential active compounds from Streptomyces sp. KR0006: Strain improvement through mutagenesis. PloS one 2022, 17, e0274766. doi:10.1371/journal.pone.0274766
  • Dembitsky, V. M. Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiology Research 2022, 13, 377–417. doi:10.3390/microbiolres13030030
  • Amelia, T. S. M.; Suaberon, F. A. C.; Vad, J.; Fahmi, A. D. M.; Saludes, J. P.; Bhubalan, K. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products. Marine biotechnology (New York, N.Y.) 2022, 24, 492–512. doi:10.1007/s10126-022-10130-2
  • Li, K.; Chen, S.; Pang, X.; Cai, J.; Zhang, X.; Liu, Y.; Zhu, Y.; Zhou, X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. European journal of medicinal chemistry 2022, 230, 114117. doi:10.1016/j.ejmech.2022.114117
  • Marshall, J. W.; de Mattos-Shipley, K. M. J.; Ghannam, I. A. Y.; Munawar, A.; Killen, J. C.; Lazarus, C. M.; Cox, R. J.; Willis, C. L.; Simpson, T. J. Fusarochromene, a novel tryptophan-derived metabolite from Fusarium sacchari. Organic & biomolecular chemistry 2021, 19, 182–187. doi:10.1039/d0ob02031a
  • Malik, A.; Kim, Y. R.; Kim, S. B. Genome Mining of the Genus Streptacidiphilus for Biosynthetic and Biodegradation Potential. Genes 2020, 11, 1166. doi:10.3390/genes11101166
  • Pathak, A.; Nowell, R. W.; Wilson, C. G.; Ryan, M.; Barraclough, T. G. Comparative genomics of Alexander Fleming’s original Penicillium isolate (IMI 15378) reveals sequence divergence of penicillin synthesis genes. Scientific reports 2020, 10, 15705. doi:10.1038/s41598-020-72584-5
  • Shaikh, A.; Tekale, S. S.; Wagh, S. K.; Padul, M. V. Metabolite profiling of Arginase Inhibitor activity guided fraction of Ficus religiosa leaves by LC- HRMS. Biomedical chromatography : BMC 2020, 34, e4966. doi:10.1002/bmc.4966
  • Fazal, A.; Webb, M. E.; Seipke, R. F. The Desotamide Family of Antibiotics. Antibiotics (Basel, Switzerland) 2020, 9, 452. doi:10.3390/antibiotics9080452
  • Yu, T.-J.; Hsieh, C.-Y.; Tang, J.-Y.; Lin, L.-C.; Huang, H.-W.; Wang, H.-R.; Yeh, Y.-C.; Chuang, Y.-T.; Ou-Yang, F.; Chang, H.-W. Antimycin A shows selective antiproliferation to oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. Environmental toxicology 2020, 35, 1212–1224. doi:10.1002/tox.22986
Other Beilstein-Institut Open Science Activities