Caryolene-forming carbocation rearrangements

Quynh Nhu N. Nguyen and Dean J. Tantillo
Beilstein J. Org. Chem. 2013, 9, 323–331. https://doi.org/10.3762/bjoc.9.37

Supporting Information

Supporting Information File 1: Coordinates and energies for all computed structures, IRC plots, additional computational details and full Gaussian citation.
Format: PDF Size: 954.2 KB Download

Cite the Following Article

Caryolene-forming carbocation rearrangements
Quynh Nhu N. Nguyen and Dean J. Tantillo
Beilstein J. Org. Chem. 2013, 9, 323–331. https://doi.org/10.3762/bjoc.9.37

How to Cite

Nguyen, Q. N. N.; Tantillo, D. J. Beilstein J. Org. Chem. 2013, 9, 323–331. doi:10.3762/bjoc.9.37

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kumar, R. P.; Matos, J. O.; Black, B. Y.; Ellenburg, W. H.; Chen, J.; Patterson, M.; Gehtman, J. A.; Theobald, D. L.; Krauss, I. J.; Oprian, D. D. Crystal Structure of Caryolan-1-ol Synthase, a Sesquiterpene Synthase Catalyzing an Initial Anti-Markovnikov Cyclization Reaction. Biochemistry 2024. doi:10.1021/acs.biochem.4c00547
  • Nakano, M.; Gemma, R.; Sato, H. Unraveling the role of prenyl side-chain interactions in stabilizing the secondary carbocation in the biosynthesis of variexenol B. Beilstein journal of organic chemistry 2023, 19, 1503–1510. doi:10.3762/bjoc.19.107
  • Paknikar, S. K.; Fondekar, K. P. Recent Developments in Selected Sesquiterpenes: Molecular Rearrangements, Biosynthesis, and Structural Relationship among Congeners. Terpenes and Terpenoids; IntechOpen, 2018. doi:10.5772/intechopen.74998
  • Pedrón, M.; Delso, J. I.; Tejero, T.; Merino, P. Concerted Albeit Not Pericyclic Cycloadditions: Understanding the Mechanism of the (4+3) Cycloaddition between Nitrones and 1,2-Diaza-1,3-dienes. European Journal of Organic Chemistry 2018, 2019, 391–400. doi:10.1002/ejoc.201800663
  • Rablen, P. R. Acid-Catalyzed Conversion Of Caryolan-1-ol To Isoclovene: A Computational Investigation Of The Multi-Step Carbocation Rearrangement. Tetrahedron 2018, 74, 3781–3786. doi:10.1016/j.tet.2018.04.031
  • Newton, C. G.; Tran, D. N.; Wodrich, M. D.; Cramer, N. One-Step Multigram-Scale Biomimetic Synthesis of Psiguadial B. Angewandte Chemie (International ed. in English) 2017, 56, 13776–13780. doi:10.1002/anie.201708333
  • Newton, C. G.; Tran, D. N.; Wodrich, M. D.; Cramer, N. One‐Step Multigram‐Scale Biomimetic Synthesis of Psiguadial B. Angewandte Chemie 2017, 129, 13964–13968. doi:10.1002/ange.201708333
  • Chiacchio, M. A.; Legnani, L.; Caramella, P.; Tejero, T.; Merino, P. Pivotal Neighboring-Group Participation in Substitution versus Elimination Reactions – Computational Evidence for Ion Pairs in the Thionation of Alcohols with Lawesson's Reagent. European Journal of Organic Chemistry 2017, 2017, 1952–1960. doi:10.1002/ejoc.201700127
  • Le Bideau, F.; Kousara, M.; Chen, L.; Wei, L.; Dumas, F. Tricyclic Sesquiterpenes from Marine Origin. Chemical reviews 2017, 117, 6110–6159. doi:10.1021/acs.chemrev.6b00502
  • Nguyen, Q. N. N.; Tantillo, D. J. Using quantum chemical computations of NMR chemical shifts to assign relative configurations of terpenes from an engineered Streptomyces host. The Journal of antibiotics 2016, 69, 534–540. doi:10.1038/ja.2016.51
  • Ortega, D. E.; Nguyen, Q. N. N.; Tantillo, D. J.; Toro-Labbé, A. The catalytic effect of the NH3 base on the chemical events in the caryolene-forming carbocation cascade. Journal of computational chemistry 2016, 37, 1068–1081. doi:10.1002/jcc.24294
  • Krenske, E. H.; Williams, C. M. Do Anti‐Bredt Natural Products Exist? Olefin Strain Energy as a Predictor of Isolability. Angewandte Chemie 2015, 127, 10754–10758. doi:10.1002/ange.201503822
  • Krenske, E. H.; Williams, C. M. Do anti-Bredt natural products exist? Olefin strain energy as a predictor of isolability. Angewandte Chemie (International ed. in English) 2015, 54, 10608–10612. doi:10.1002/anie.201503822
  • White, A. M.; Pierens, G. K.; Skinner-Adams, T. S.; Andrews, K. T.; Bernhardt, P. V.; Krenske, E. H.; Mollo, E.; Garson, M. J. Antimalarial Isocyano and Isothiocyanato Sesquiterpenes with Tri- and Bicyclic Skeletons from the Nudibranch Phyllidia ocellata. Journal of natural products 2015, 78, 1422–1427. doi:10.1021/acs.jnatprod.5b00354
  • Hare, S. R.; Orman, M.; Dewan, F.; Dalchand, E.; Buzard, C.; Ahmed, S.; Tolentino, J. C.; Sethi, U.; Terlizzi, K.; Houferak, C.; Stein, A. M.; Stedronsky, A.; Thamattoor, D. M.; Tantillo, D. J.; Merrer, D. C. Experimental and computational mechanistic investigation of chlorocarbene additions to bridgehead carbene-anti-Bredt systems: noradamantylcarbene-adamantene and adamantylcarbene-homoadamantene. The Journal of organic chemistry 2015, 80, 5049–5065. doi:10.1021/acs.joc.5b00456
  • Hamlin, T. A.; Hamann, C. S.; Tantillo, D. J. Delocalization of charge and electron density in the humulyl cation—implications for terpene biosynthesis. The Journal of organic chemistry 2015, 80, 4046–4053. doi:10.1021/acs.joc.5b00381
  • Hong, Y. J.; Tantillo, D. J. Feasibility of intramolecular proton transfers in terpene biosynthesis--guiding principles. Journal of the American Chemical Society 2015, 137, 4134–4140. doi:10.1021/ja512685x
  • Mak, J. Y. W.; Pouwer, R. H.; Williams, C. M. Naturstoffe mit Anti‐Bredt‐ und Brückenkopf‐Doppelbindung. Angewandte Chemie 2014, 126, 13882–13906. doi:10.1002/ange.201400932
  • Mak, J. Y. W.; Pouwer, R. H.; Williams, C. M. Natural Products with Anti-Bredt and Bridgehead Double Bonds. Angewandte Chemie (International ed. in English) 2014, 53, 13664–13688. doi:10.1002/anie.201400932
  • Hong, Y. J.; Tantillo, D. J. How cyclobutanes are assembled in nature – insights from quantum chemistry. Chemical Society reviews 2014, 43, 5042–5050. doi:10.1039/c3cs60452g
Other Beilstein-Institut Open Science Activities