This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202
Graphical Abstract
Scheme 1: Synthesis of catechol-containing compounds 1–9.
Figure 1: The X-ray structure of catechol 5 (the thermal ellipsoids of 50% probability). The hydrogen atoms e...
Figure 2: The X-ray structures of catechols 6 (a) and 8 (b) (the thermal ellipsoids of 50% probability). The ...
Figure 3: Fragment of the pack of catechol 5 in crystal (the H-bonds and π–π interactions are shown as dotted...
Figure 4: The interactions in pair of independent molecules A and B of 6 in crystal 6·0.5CH3CN (the H-bonds a...
Figure 5: Fragment of the pack of catechol 8 in crystal (the H-bonds and π–π interactions are shown as dotted...
Scheme 2: Electrochemical transformations of compounds 1–3.
Figure 6: The CV curve of 2 at the potential range from −0.50 to 1.60 V (CH3CN, GC electrode, Ag/AgCl/KCl(sat...
Figure 7: The CV curves of 3 at the potential ranges from –0.5 to 1.2 V (curve 1); from –0.5 to 2.0 V (curve ...
Figure 8: The CV curves of 7 at the potential ranges from –0.5 to 1.3 V (curve 1); from –0.5 to 1.8 V (curve ...
Scheme 3: Proposed mechanism of an electrooxidation of compounds 6–8.
Figure 9: The level of TBARS in rat liver homogenates in vitro, in the presence of compounds 1–9, Trolox, and...
Beilstein J. Org. Chem. 2024, 20, 552–560, doi:10.3762/bjoc.20.47
Scheme 1: Synthesis of compound 1 and N-acylated compounds 2a–c.
Figure 1: Absorption (1), fluorescence (2, λex = 410 nm) and fluorescence excitation (3, λfl = 465 nm) spectr...
Figure 2: Electronic absorption spectra of compound 2b in acetonitrile before (1) and after 15 s (2), 35 s (3...
Scheme 2: Photoisomerization of N-acylated ketoenamines 2a–c.
Figure 3: Molecular structure of O-acylated isomer 3b. Thermal ellipsoids are drawn at the 50% probability le...
Figure 4: Fragment of the molecular packing of compound 3b, showing π–π interactions in the crystalline state...
Figure 5: Absorption spectra of compound 2a in acetonitrile before (1) and after (2) the addition of Fe2+ (c2a...
Figure 6: Changes in the absorption intensity of compound 2a in acetonitrile at 520 nm after the addition of ...
Scheme 3: Sequential interaction of compounds 2a–c with Fe2+ and AcO−.
Figure 7: Job’s plot at the wavelength 429 nm, reflecting the interaction of compound 2a with Fe2+ in acetoni...
Figure 8: Fluorescence intensity of compound 2a upon alternate addition of Fe2+ and AcO−.
Beilstein J. Org. Chem. 2024, 20, 243–253, doi:10.3762/bjoc.20.24
Scheme 1: Comparison of basicity (in water scale) and synthetic availability of quinoline-type azaarenes and ...
Figure 1: Suggested amination products 6 and two resonance forms of dianion 7.
Figure 2: Targeted dipyridoacenaphthylene 8.
Scheme 2: Formation of complex 9 and its slow hydrolytic degradation into protic salt 5·HCl.
Figure 3: Molecular and crystal structure of salt 5·HCl·2H2O is strongly dominated by severe H-bonding (blue ...
Figure 4: Selected images of the supramolecular organization of two molecules of base 5 held by 4,6-dichloror...
Figure 5: Fragment of the crystal packing of neutral dipyridoacenaphthene 5 showing self-association via mult...
Scheme 3: Dinitration of compound 5 and the initially assumed admixture 11.
Scheme 4: Mononitration of compound 5.
Figure 6: Structure of dinitroacenaphthylene 12.
Scheme 5: Dehydrogenation of compounds 10 and 11.
Scheme 6: Nucleophilic methoxylation of compounds 10(12).
Figure 7: Basicity of key compounds in acetonitrile.
Scheme 7: Electrophilic bromination of compound 5.
Scheme 8: tele-Elimination upon interaction of dibromide 15 with pyrrolidine.
Scheme 9: Interaction of dibromide 15 with anionic bases.