Search results

Search for "Cu-catalyzed" in Full Text gives 122 result(s) in Beilstein Journal of Organic Chemistry.

Unexpected chiral vicinal tetrasubstituted diamines via borylcopper-mediated homocoupling of isatin imines

  • Marco Manenti,
  • Leonardo Lo Presti,
  • Giorgio Molteni and
  • Alessandra Silvani

Beilstein J. Org. Chem. 2022, 18, 303–308, doi:10.3762/bjoc.18.34

Graphical Abstract
  • oxindoles [7][8][9][10][11] and also of aminoboronic acids [12], we recently exploited a molecular hybridization strategy to synthesize chiral oxindole-based β-aminoboronic acids and spiro derivatives [13]. Apart from our work and a quite recent report describing a useful Cu-catalyzed enantioselective
PDF
Album
Supp Info
Letter
Published 10 Mar 2022

AlBr3-Promoted stereoselective anti-hydroarylation of the acetylene bond in 3-arylpropynenitriles by electron-rich arenes: synthesis of 3,3-diarylpropenenitriles

  • Yelizaveta Gorbunova,
  • Dmitry S. Ryabukhin and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2021, 17, 2663–2667, doi:10.3762/bjoc.17.180

Graphical Abstract
  • way for the synthesis of compounds 2. These compounds can be alternatively obtained by a Pd-catalyzed Heck reaction of 3-arylpropenenitriles with iodoarenes [23] or by a Cu-catalyzed hydroarylation of 3-arylpropynenitriles with arylboronic acid [24][25]. There is one example of use of dicyanoacetylene
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • metals. Second, both amines and the resulting aminated products could coordinate with metal catalysts and cause the deactivation of catalysts. Besides, high reaction temperature could lead to a mixture of byproducts or the decomposition of the ferrocene products. Herein, we described a Cu-catalyzed
  • oxidative C–H/N–H coupling of ferrocenes with free amines to provide mono-aminated ferrocenes exclusively under mild conditions (Scheme 1b). During the preparation of the manuscript of this article, a nice report on Cu-catalyzed C–H amination of ferrocenes directed by 8-aminoquinoline was reported by
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Preparation of mono-substituted malonic acid half oxyesters (SMAHOs)

  • Tania Xavier,
  • Sylvie Condon,
  • Christophe Pichon,
  • Erwan Le Gall and
  • Marc Presset

Beilstein J. Org. Chem. 2021, 17, 2085–2094, doi:10.3762/bjoc.17.135

Graphical Abstract
  • usually achieved by a nucleophilic substitution of an alkyl halide by the deprotonated malonate [12][13][14][15][16][17][18][19], but other strategies could be envisioned: Cu-catalyzed arylation reactions for aryl-substituted MAHOs [20][21][22][23]; Knoevenagel/reduction sequences for benzyl-substituted
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • amiodarone (93, antiarrhythmic activity) (Scheme 32A) [166]. The method consists of a tandem, regioselective Fe(III)-catalyzed C–H halogenation, followed by an Fe or Cu-catalyzed O-arylation to access the benzo[b]furan derivatives in high yields. Several natural products and pharmacologically active targets
PDF
Album
Review
Published 30 Jul 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • after the support of DOX molecules on the polymer prodrug, which resulted in reduced side effects (Scheme 18b) [48][49]. Cu-catalyzed synthesis of fully decorated triazoles The Cu-catalyzed regioselective cyclization of alkynes 57 and azides 58, followed by coupling with propargylic carbonates 59
  • for the reaction as both of the two selanyl groups are used [53]. Trisubstituted triazoles 93 containing an Sb substituent at position C5 were prepared via a Cu-catalyzed [3 + 2]-cycloaddition reaction between several ethynylstibanes 91 and benzyl azide 92 using CuBr under air. The reaction proceeded
  • the triazole ring was achieved under optimized conditions. The reaction displayed extensive diversity and excellent functional group tolerance It should be noted once again that Cu-catalyzed triazoles were obtained in good to excellent yield by using 10% CuI and 10% Cu, which were subsequently
PDF
Album
Review
Published 13 Jul 2021

Synthesis of 1-indolyl-3,5,8-substituted γ-carbolines: one-pot solvent-free protocol and biological evaluation

  • Premansh Dudhe,
  • Mena Asha Krishnan,
  • Kratika Yadav,
  • Diptendu Roy,
  • Krishnan Venkatasubbaiah,
  • Biswarup Pathak and
  • Venkatesh Chelvam

Beilstein J. Org. Chem. 2021, 17, 1453–1463, doi:10.3762/bjoc.17.101

Graphical Abstract
  • extreme thermal conditions with the use of corrosive reagents. Much later, Larock and co-workers developed a Pd/Cu-catalyzed imino-annulation of internal alkynes [15], which paved the way for transition-metal-catalyzed cyclizations as easy access to these scaffolds. Notably, the gold-catalyzed tandem
PDF
Album
Supp Info
Letter
Published 17 Jun 2021

Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide–alkyne cycloaddition

  • Maryna O. Mazur,
  • Oleksii S. Zhelavskyi,
  • Eugene M. Zviagin,
  • Svitlana V. Shishkina,
  • Vladimir I. Musatov,
  • Maksim A. Kolosov,
  • Elena H. Shvets,
  • Anna Yu. Andryushchenko and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2021, 17, 678–687, doi:10.3762/bjoc.17.57

Graphical Abstract
  • ] (Scheme 1). Even though at first glance the syntheses from Scheme 1, where in the second step the NaN3 is used (Scheme 1, (d) and (e)) [3][14], are the combination of sequential Ugi and IAAC reactions, that’s not entirely true. Actually, the mechanism of the abovementioned Cu-catalyzed reactions with NaN3
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2021

Deoxygenative C2-heteroarylation of quinoline N-oxides: facile access to α-triazolylquinolines

  • Geetanjali S. Sontakke,
  • Rahul K. Shukla and
  • Chandra M. R. Volla

Beilstein J. Org. Chem. 2021, 17, 485–493, doi:10.3762/bjoc.17.42

Graphical Abstract
  • pyridine N-oxides [54]. Despite the versatility of these methods, the above reports involve the use of external additives for activating the N-oxides and suffer from other disadvantages, including prolonged reaction time, high temperature and limited substrate scope. At the same time, with the advent of Cu
  • -catalyzed “Click” chemistry, N-sulfonyl-1,2,3-triazoles have become useful precursors for accessing a variety of heterocyclic moieties [55][56]. In spite of the above methods for the C2-amination, the establishment of a simple, efficient and atom-economical method for the synthesis of 2-triazolylquinoline
PDF
Album
Supp Info
Letter
Published 17 Feb 2021

Regioselective synthesis of heterocyclic N-sulfonyl amidines from heteroaromatic thioamides and sulfonyl azides

  • Vladimir Ilkin,
  • Vera Berseneva,
  • Tetyana Beryozkina,
  • Tatiana Glukhareva,
  • Lidia Dianova,
  • Wim Dehaen,
  • Eugenia Seliverstova and
  • Vasiliy Bakulev

Beilstein J. Org. Chem. 2020, 16, 2937–2947, doi:10.3762/bjoc.16.243

Graphical Abstract
  • commonly used methods to prepare these compounds include the Cu-catalyzed multicomponent reaction of alkynes, sulfonyl azides and amines [23][24][25][26][27][28][29][30][31], the reaction of thioacetamide derivatives and cyclic thioamides with sulfonyl azides [22][32][33], the chlorophosphite-mediated
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2020

A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogen-containing heterocycles

  • Bingbing Lai,
  • Meng Ye,
  • Ping Liu,
  • Minghao Li,
  • Rongxian Bai and
  • Yanlong Gu

Beilstein J. Org. Chem. 2020, 16, 2888–2902, doi:10.3762/bjoc.16.238

Graphical Abstract
  • ). Recyclability of LS-FAS-Cu, LS-FM-Cu and Resin-Cu in the reaction between compounds 1a, 2a and 3a. Substrate scope of LS-FAS-Cu catalyzed three-component reactions of 4-aminoindoles, alkynes and aldehydes. Three-component reaction of 1a, 2a, and 3a to synthesis of 4aa. Optimizing the reaction condition of
  • acetophenones and 1,3-diaminopropane to synthesis 2‑arylpyridine derivatives.a Acid density of catalyst. Substrate scope of the ketones catalyzed by LSA-FAS-Cu. LS-FAS-Cu catalyzed synthesis of aminonaphthalene derivatives.a Synthesis of the 3-phenylisoquinoline from 11a and urea (12a).a Supporting Information
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2020

Synthesis and investigation of quadruplex-DNA-binding, 9-O-substituted berberine derivatives

  • Jonas Becher,
  • Daria V. Berdnikova,
  • Heiko Ihmels and
  • Christopher Stremmel

Beilstein J. Org. Chem. 2020, 16, 2795–2806, doi:10.3762/bjoc.16.230

Graphical Abstract
  • berberine derivatives was synthesized by the Cu-catalyzed click reaction of 9-propargyladenine with 9-O-(azidoalkyl)berberine derivatives. The association of the resulting berberine–adenine conjugates with representative quadruplex-forming oligonucleotides 22AG dA(G3TTA)3G3 and a2 d(ACAG4TGTG4)2 was
  • -forming repeat unit from the “insulin-linked polymorphic region” (ILPR) [50], that was also shown to bind quadruplex ligands [51]. Results Synthesis As the Cu-catalyzed click reaction between azides and alkynes is a well-established method for the variable functionalization of G4-DNA ligands [52], the
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2020

Syntheses of spliceostatins and thailanstatins: a review

  • William A. Donaldson

Beilstein J. Org. Chem. 2020, 16, 1991–2006, doi:10.3762/bjoc.16.166

Graphical Abstract
  • considerably more efficient than the Ghosh synthesis of 102. Syntheses of the C-1–C-6 segment of spliceostatin E (10) The Ghosh group’s synthesis of the C-1–C-6 segment of spliceostatin E (10) relied on a Cu-catalyzed Grignard addition to tert-butyldiphenylsilyl-protected (R)-glycidol, followed by the
PDF
Album
Review
Published 13 Aug 2020

Regiodivergent synthesis of functionalized pyrimidines and imidazoles through phenacyl azides in deep eutectic solvents

  • Paola Vitale,
  • Luciana Cicco,
  • Ilaria Cellamare,
  • Filippo M. Perna,
  • Antonio Salomone and
  • Vito Capriati

Beilstein J. Org. Chem. 2020, 16, 1915–1923, doi:10.3762/bjoc.16.158

Graphical Abstract
  • ], (c) carbon–sulfur bond-forming reactions [9], (d) directed ortho-metalation and nucleophilic acyl substitution strategies [10], (e) Pd-catalyzed aminocarbonylation of aryl iodides, Suzuki–Miyaura and Sonogashira cross-coupling reactions [11][12][13], (f) Cu-catalyzed C–N coupling reactions [14], and
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • good yields and the authors applied the methodology for the late-stage acylation of natural ʟ-tryptophan as well as carbazole derivatives. Cu-catalyzed transformations Sporadic examples using copper as transition metal for C–H functionalization reactions in combination with photocatalysis were also
PDF
Album
Review
Published 21 Jul 2020

Palladium-catalyzed regio- and stereoselective synthesis of aryl and 3-indolyl-substituted 4-methylene-3,4-dihydroisoquinolin-1(2H)-ones

  • Valeria Nori,
  • Antonio Arcadi,
  • Armando Carlone,
  • Fabio Marinelli and
  • Marco Chiarini

Beilstein J. Org. Chem. 2020, 16, 1084–1091, doi:10.3762/bjoc.16.95

Graphical Abstract
  • , widening in such a way the scope of the methodology and allowing challenging synthesis of indoles 6 bearing a 4-alkylidene-3,4-dihydroisoquinolin-1(2H)-one substituent (Scheme 1b). It is worth noting that an aerobic Pd/Cu-catalyzed cyclizative cross-coupling between 2-alkynylanilines and 2
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2020

Synthesis and anticancer activity of bis(2-arylimidazo[1,2-a]pyridin-3-yl) selenides and diselenides: the copper-catalyzed tandem C–H selenation of 2-arylimidazo[1,2-a]pyridine with selenium

  • Mio Matsumura,
  • Tsutomu Takahashi,
  • Hikari Yamauchi,
  • Shunsuke Sakuma,
  • Yukako Hayashi,
  • Tadashi Hyodo,
  • Tohru Obata,
  • Kentaro Yamaguchi,
  • Yasuyuki Fujiwara and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2020, 16, 1075–1083, doi:10.3762/bjoc.16.94

Graphical Abstract
  • selenium source in the presence of a transition metal catalyst, such as Cu or Ni [27][28][29][30][31][32]. In 2011, Zhou et al. reported the pioneering Cu-catalyzed C–H selenation of 2-arylimidazopyridine with diphenyl diselenide in the presence of CuI (10 mol %) [29]. Tandem reactions involving the
  • oxidant) as the selenium source under acidic conditions, and the substrate scope and limitations have not been clarified. Moreover, the syntheses of bis(2-arylimidazo[1,5-a]pyridin-3-yl) selenides and diselenides have recently been investigated using Cu-catalyzed reactions involving imidazo[1,5-a
  • studies in the synthesis of organoselenium compounds containing imidazo[1,2-a]pyridine rings [27][28][29][30][31][32][33][34], the synthesis of bis(2-arylimidazo[1,2-a]pyridin-3-yl) selenides and diselenides by the Cu-catalyzed tandem C–H selenation of 2-arylimidazo[1,2-a]pyridines with Se powder is
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • organosilicon [17][18][19][20] and organoboron [21][22][23][24] compounds (i.e., C(sp3)–Si and C(sp3)–B). Nonetheless, considering the extent of their use and their increasing popularity in the pharmaceutical industry, as well as the significant growth in the development of Cu-catalyzed processes applied to
  • their syntheses, a review on this subject seems quite timely. Therefore, we will focus on highlights of the past 5–6 years in this area, dividing the document into two sections: C–Si and C–B bond formation. Review Cu-catalyzed C–Si bond formation 1.1 Substitution reactions Alkylsilanes are an
  • mechanism(s), a variety of substrates were suitable for this transformation, giving the desired products 42–44 in good chemical yields (Scheme 10) [32]. 1.2 Additions to imines Among the very first studies on Cu-catalyzed additions to imines one can include the work of Moeller and co-workers published in
PDF
Album
Review
Published 15 Apr 2020

Copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters with chiral phenol–carbene ligands

  • Shohei Mimura,
  • Sho Mizushima,
  • Yohei Shimizu and
  • Masaya Sawamura

Beilstein J. Org. Chem. 2020, 16, 537–543, doi:10.3762/bjoc.16.50

Graphical Abstract
  • enantioselectivity. Conclusion A chiral phenol–NHC ligand efficiently promoted the enantioselective conjugate reduction of α,β-unsaturated esters with a hydrosilane. To the best of our knowledge, this is the first demonstration of the applicability of chiral NHC ligands in Cu-catalyzed enantioselective conjugate
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2020

Copper-catalyzed remote C–H arylation of polycyclic aromatic hydrocarbons (PAHs)

  • Anping Luo,
  • Min Zhang,
  • Zhangyi Fu,
  • Jingbo Lan,
  • Di Wu and
  • Jingsong You

Beilstein J. Org. Chem. 2020, 16, 530–536, doi:10.3762/bjoc.16.49

Graphical Abstract
  • and 4i). Notably, 1-naphthamides with alkenyl (1l) and alkynyl (1m) groups were also suitable substrates for this direct C7−H arylation, affording 4k and 4l in good yields (Scheme 3, 4k and 4l). Furthermore, this Cu-catalyzed direct C−H arylation could tolerate other PAH substrates. The regioselective
PDF
Album
Supp Info
Full Research Paper
Published 30 Mar 2020

Controlling alkyne reactivity by means of a copper-catalyzed radical reaction system for the synthesis of functionalized quaternary carbons

  • Goki Hirata,
  • Yu Yamane,
  • Naoya Tsubaki,
  • Reina Hara and
  • Takashi Nishikata

Beilstein J. Org. Chem. 2020, 16, 502–508, doi:10.3762/bjoc.16.45

Graphical Abstract
  • methodology can realize a Pd-free catalyst system to prepare complex quaternary carbon atoms. Herein, we report the Cu-catalyzed control of the reactivity of an alkyne (addition and coupling) undergoing tandem tertiary alkylation and alkynylation to produce a 1,3-enyne containing a quaternary carbon center
  • radical reaction [36]. Both cases were helpful in our development of the current Cu-catalyzed cascade C–H cyclization system. After careful optimization, we found that CuI, 1,10-Phen, Cy2NMe as a base, and 1,4-dioxane were effective for obtaining the best yields of products 5 (Figure 2). In this
PDF
Album
Supp Info
Letter
Published 26 Mar 2020

Copper-catalyzed enantioselective conjugate addition of organometallic reagents to challenging Michael acceptors

  • Delphine Pichon,
  • Jennifer Morvan,
  • Christophe Crévisy and
  • Marc Mauduit

Beilstein J. Org. Chem. 2020, 16, 212–232, doi:10.3762/bjoc.16.24

Graphical Abstract
  • 97% ee, Scheme 23) [52]. This methodology was successfully applied to the synthesis of various natural molecules, such as (S)-Florhydral® and (S)-(+)-ar-turmerone or key intermediates in the synthesis of 8-deoxyanisatin and frondosin. Conclusion The enantioselective Cu-catalyzed conjugate addition of
  • and productivity, and a wide scope, and on the other hand, to include this highly promising methodology in many synthetic strategies. Competitive side reactions in the Cu ECA of organometallic reagents to α,β-unsaturated aldehydes. Cu-catalyzed ECA of α,β-unsaturated aldehydes with phosphoramidite- (a
  • ) and phosphine-based ligands (b). One-pot Cu-catalyzed ECA/organocatalyzed α-substitution of enals. Combination of copper and amino catalysis for enantioselective β-functionalizations of enals. Optimized conditions for the Cu ECAs of R2Zn, RMgBr, and AlMe3 with α,β-unsaturated aldehydes. CuECA of
PDF
Album
Review
Published 17 Feb 2020

Combination of multicomponent KA2 and Pauson–Khand reactions: short synthesis of spirocyclic pyrrolocyclopentenones

  • Riccardo Innocenti,
  • Elena Lenci,
  • Gloria Menchi and
  • Andrea Trabocchi

Beilstein J. Org. Chem. 2020, 16, 200–211, doi:10.3762/bjoc.16.23

Graphical Abstract
  • , Viale Morgagni 85, 50134 Florence, Italy 10.3762/bjoc.16.23 Abstract The Cu-catalyzed multicomponent ketone–amine–alkyne (KA2) reaction was combined with a Pauson–Khand cycloaddition to give access of unprecedented constrained spirocyclic pyrrolocyclopentenone derivatives following a DOS couple-pair
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Allylic cross-coupling using aromatic aldehydes as α-alkoxyalkyl anions

  • Akihiro Yuasa,
  • Kazunori Nagao and
  • Hirohisa Ohmiya

Beilstein J. Org. Chem. 2020, 16, 185–189, doi:10.3762/bjoc.16.21

Graphical Abstract
  • silyl ether, which are derived from the Pd-catalyzed allylic silylation of 2a and the Cu-catalyzed silylation of 1a and the subsequent [1,2]-Brook rearrangement, respectively. In this coupling reaction, (SIPr)CuCl was a slightly better copper complex than (IPr)CuCl (62%), (SIMes)CuCl (60%) and (IMes
PDF
Album
Supp Info
Letter
Published 07 Feb 2020

Palladium-catalyzed Sonogashira coupling reactions in γ-valerolactone-based ionic liquids

  • László Orha,
  • József M. Tukacs,
  • László Kollár and
  • László T. Mika

Beilstein J. Org. Chem. 2019, 15, 2907–2913, doi:10.3762/bjoc.15.284

Graphical Abstract
  • detected in imidazolium-type ILs. However, complete conversion of 1a was observed in [TBP][4EtOV], without Et3N, proving that the solvent can act as a base in itself (Table 1, #2) as it was demonstrated for Cu-catalyzed C–N coupling reactions [34]. When, we attempted to couple 1a and 2a in the absence of
PDF
Album
Supp Info
Full Research Paper
Published 03 Dec 2019
Other Beilstein-Institut Open Science Activities