Search results

Search for "Negishi cross-coupling" in Full Text gives 30 result(s) in Beilstein Journal of Organic Chemistry.

An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles

  • Marcus Baumann and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265

Graphical Abstract
  • recently reported an approach to forming the first aryl–aryl C–C bond by a directed lithiation of a pyridine 1.91 followed by conversion to its organozinc derivative. This intermediate then undergoes a high-yielding Negishi cross-coupling reaction with an arylbromide (Scheme 17) [52]. After acidic
PDF
Album
Review
Published 30 Oct 2013

Intramolecular carbolithiation of N-allyl-ynamides: an efficient entry to 1,4-dihydropyridines and pyridines – application to a formal synthesis of sarizotan

  • Wafa Gati,
  • Mohamed M. Rammah,
  • Mohamed B. Rammah and
  • Gwilherm Evano

Beilstein J. Org. Chem. 2012, 8, 2214–2222, doi:10.3762/bjoc.8.250

Graphical Abstract
  • isolated in modest yields (30–33%), even in the presence of additional HMPA, which might may constitute the major limitation of our process. Other attempts involving electrophiles such as acid chlorides and allyl bromide or transmetallation with zinc chloride and Negishi cross-coupling were unsuccessful
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2012

Stereoselective synthesis of tetrasubstituted alkenes via a sequential carbocupration and a new sulfur–lithium exchange

  • Andreas Unsinn,
  • Cora Dunst and
  • Paul Knochel

Beilstein J. Org. Chem. 2012, 8, 2202–2206, doi:10.3762/bjoc.8.248

Graphical Abstract
  • 9 in 77% yield. Direct Pd-catalyzed Negishi cross-coupling [24][25][26][27][28] of 9 with an arylzinc derivative failed. However, the bromide 9 could be readily converted to the corresponding iodide 10 by a bromine–magnesium exchange using iPrMgCl·LiCl [29][30][31][32][33][34][35] followed by
  • iodolysis leading to the iodide 10 in 93% yield. Treatment of 1,2-dibromobenzene with iPrMgCl·LiCl at −15 °C for 2 h followed by a transmetalation with ZnCl2 gives the required zinc reagent 11, which undergoes a Negishi cross-coupling with the iodide 10 at 50 °C (5 h) leading to the alkynyl thioether 1a in
PDF
Album
Supp Info
Letter
Published 18 Dec 2012

Recent advances in direct C–H arylation: Methodology, selectivity and mechanism in oxazole series

  • Cécile Verrier,
  • Pierrik Lassalas,
  • Laure Théveau,
  • Guy Quéguiner,
  • François Trécourt,
  • Francis Marsais and
  • Christophe Hoarau

Beilstein J. Org. Chem. 2011, 7, 1584–1601, doi:10.3762/bjoc.7.187

Graphical Abstract
  • the ring-close oxazole, a trend that is evidenced by 1H NMR spectroscopy and attributed to the strong covalent carbon–zinc bond along with the zinc’s low oxophilicity, and this thus allows subsequent palladium-catalyzed Negishi cross-coupling [31][32][33]. This first, highly efficient, stoichiometric
  • dehydrogenative couplings of (benz)oxazoles with (hetero)arenes have been developed. Stoichiometric and catalytic direct (hetero)arylation of arenes. Stille and Negishi cross-coupling methodologies in oxazole series [28][30][31][33][34]. Stoichiometric direct (hetero)arylation of (benz)oxazole with magnesate
PDF
Album
Review
Published 29 Nov 2011

Functionalization of heterocyclic compounds using polyfunctional magnesium and zinc reagents

  • Paul Knochel,
  • Matthias A. Schade,
  • Sebastian Bernhardt,
  • Georg Manolikakes,
  • Albrecht Metzger,
  • Fabian M. Piller,
  • Christoph J. Rohbogner and
  • Marc Mosrin

Beilstein J. Org. Chem. 2011, 7, 1261–1277, doi:10.3762/bjoc.7.147

Graphical Abstract
  • obtained in 63% yield. Also, the dibromothiazole 19 allows insertion of zinc only into the most labile C–Br bond (in position 2) leading to the zincated thiazole 20. After Negishi cross-coupling [10][11][12], the 2-arylated thiazole 21 is obtained in 85% yield. Polar functional groups, such as a tosyloxy
  • is obtained in 75% yield. Coumarine (46) can be directed zincated leading to the zinc reagent 47. After a Negishi cross-coupling with an aromatic iodide, the substituted coumarine 48 is obtained in 83% yield (Scheme 8 and Supporting Information File 1, Procedure 3) [28]. This procedure tolerates most
  • iPrMgCl·LiCl (64) at −40 °C for 1 h leading to an intermediate magnesium reagent, which after transmetalation to the corresponding zinc reagent using ZnBr2 provides, after Negishi cross-coupling reaction with the bromoquinoline 80, the polyfunctinal triazene 81 in 75% yield. The conversion of the triazene
PDF
Album
Supp Info
Review
Published 13 Sep 2011
Other Beilstein-Institut Open Science Activities