Search results

Search for "aza-Michael" in Full Text gives 57 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • yield. Aliphatic amines were also tolerated, providing the desired products in only moderate yield. The plausible mechanism involves a tandem base-promoted aza-Michael addition, 1,2-iodocyclization, and iodine-mediated oxidative aromatization. In 2017, Zhang and co-workers reported a silver-catalyzed
  • standard conditions. The proposed catalytic cycle included aza-Michael addition of arylamines, Lewis acid copper(II)-catalyzed intramolecular 5-endo-dig cyclization, protonation, and oxidation to provide the final products, tetrasubstituted pyrroles 39. The introduction of a trifluoromethyl group into
PDF
Album
Review
Published 22 Sep 2021

Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions

  • Susanne M. Fischer,
  • Simon Renner,
  • A. Daniel Boese and
  • Christian Slugovc

Beilstein J. Org. Chem. 2021, 17, 1689–1697, doi:10.3762/bjoc.17.117

Graphical Abstract
  • ) after 24 h. To illustrate that the reaction does not stop after 24 h the conversions were re-checked after 21 d. After this time with TMTPP as the catalyst, conversions of 44% (3a), 92% (3b), 98% (3c), and 91% (3d) are obtained. No indications for aza-Michael reactions potentially leading to polyamide 3
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • cascade aza-Michael addition/olefin hydroalkylation reaction between N-tosylallylamines and α,β-unsaturated ketones using a catalytic system of a gold(I) complex and a silver salt [45]. The spiro compound 25, which was obtained in moderate yield and with poor diastereoselectivity after a 20 h reaction
  • , was the only example reported of a quaternary carbon center synthesis (Scheme 12). The observations that no reaction was detected in the absence of AgOCl and that only an aza-Michael adduct was observed in the absence of the gold(I) complex led the authors to propose that the silver(I) salt promoted
  • the aza-Michael addition and that only the cationic gold(I) complex was associated with the intramolecular hydroalkylation reaction. These observations justified the use of a three-fold excess of AgOCl in relation to the gold complex since the silver salt participated both as a source of a non
PDF
Album
Review
Published 07 Jul 2021

Icilio Guareschi and his amazing “1897 reaction”

  • Gian Cesare Tron,
  • Alberto Minassi,
  • Giovanni Sorba,
  • Mara Fausone and
  • Giovanni Appendino

Beilstein J. Org. Chem. 2021, 17, 1335–1351, doi:10.3762/bjoc.17.93

Graphical Abstract
  • Zentralblatt summary. Additionally, ambiguities exist on the molecularity of the various reactions since Guareschi was often preparing β-aminocarbonyl derivatives in situ from the self-condensation of acetone and the aza-Michael trapping of mesityl oxide. This method works well only for acetone, while further
PDF
Album
Supp Info
Review
Published 25 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • -workers found that combining an asymmetric nucleophilic addition to the chiral imine, with an intramolecular conjugate aza-Michael reaction, the expected 1,3-disubstituted isoindolines were produced with high diastereoselectivity [96]. Importantly, depending on the base involved in the intramolecular aza
  • -Michael reaction, it was possible to reach either cis- or trans-isoindolines, 69 and 70, respectively, from the same precursor 68. The authors proposed that the thermodynamically more stable cis-isomer 69 is formed when TBAF was used. Meanwhile, working under kinetic conditions (DBU as base), trans-isomer
PDF
Album
Review
Published 12 May 2021

Coupling biocatalysis with high-energy flow reactions for the synthesis of carbamates and β-amino acid derivatives

  • Alexander Leslie,
  • Thomas S. Moody,
  • Megan Smyth,
  • Scott Wharry and
  • Marcus Baumann

Beilstein J. Org. Chem. 2021, 17, 379–384, doi:10.3762/bjoc.17.33

Graphical Abstract
  • utilizing electron-poor alkenes as the reaction partners that would undergo aza-Michael addition reactions on the Cbz-carbamates (Scheme 4). Driven by the desire to develop readily scalable routes towards the target products 8, continuous flow processing was again exploited. In a first approach the use of
  • -based aza-Michael addition reactions. This novel approach allows for the creation of important chemical building blocks whilst demonstrating a new use of biocatalysts in continuous flow processes. Scope of Cbz-carbamate products obtained via flow process (*tRes = 60 min, **T = 80 °C; isolated yields
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2021

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • organic processes and have attracted considerable interest in this regard. Ru has efficiently catalyzed C–H activation reactions for C–C bond formation, aza-Michael reactions and many more MCRs [27][76][77]. During the writing of this review, we came through the fact that ruthenium catalysts were mostly
  • -benzenedicarboxylate), Puthiaraj and co-workers have unprecedently discovered the catalytic activity of this metal-organic framework (MOF) for the synthesis of imidazo[1,2-a]pyridines [100]. The three-component, one-pot reaction between 1, 3 and nitromethane (10, Scheme 5) involved an intermolecular aza-Michael
  • addition with a subsequent intramolecular cyclization catalyzed by Cu(BDC)MOF. Further, the LC–MS study of the reaction mixture has shown the imine formation to be the major pathway rather than β-nitrostyrene. The reaction involved a two-step reaction mechanism in which aza-Michael adduct 13 was formed in
PDF
Album
Review
Published 19 Jul 2019

A chemoenzymatic synthesis of ceramide trafficking inhibitor HPA-12

  • Seema V. Kanojia,
  • Sucheta Chatterjee,
  • Subrata Chattopadhyay and
  • Dibakar Goswami

Beilstein J. Org. Chem. 2019, 15, 490–496, doi:10.3762/bjoc.15.42

Graphical Abstract
  • /aza-Michael reaction of 3,6-dihydro-1,2-dioxines followed by diastereoselective reduction [25]. Most of these methods employ starting materials or catalysts, which are not commercially available, and also require operationally demanding reaction conditions. Hence a need to develop a simple, efficient
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

DABCO- and DBU-promoted one-pot reaction of N-sulfonyl ketimines with Morita–Baylis–Hillman carbonates: a sequential approach to (2-hydroxyaryl)nicotinate derivatives

  • Soumitra Guin,
  • Raman Gupta,
  • Debashis Majee and
  • Sampak Samanta

Beilstein J. Org. Chem. 2018, 14, 2771–2778, doi:10.3762/bjoc.14.254

Graphical Abstract
  • ' fashion to make a very reactive allyl ammonium intermediate 6. The latter further involves in the SN2' reaction with in situ generated carbanion intermediate 1a' forming SN2-adduct 3a. It undergoes an intramolecular aza-Michael reaction in the presence of DABCO, leading to tricyclic product 4a. For the
  • -hydroxyaryl)pyridine derivatives bearing a carboxylate or a nitrile group suitably placed at C3 position of the aza-ring has been achieved in acceptable chemical yields with a broad functional group tolerance. This sequential C–C/C–N bond making process proceeds through a regioselective allylic alkylation/aza
  • -Michael reaction between MBH carbonates derived from an acrylate/acrylonitrile and N-sulfonyl ketimines as C,N-binucleophiles catalyzed by DABCO, followed by elimination of SO2 under the influence of base and subsequent aromatization in an open atmosphere. Keywords: MBH carbonates; metal-free; N-sulfonyl
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2018

Synthesis of functionalised β-keto amides by aminoacylation/domino fragmentation of β-enamino amides

  • Pavel Yanev and
  • Plamen Angelov

Beilstein J. Org. Chem. 2018, 14, 2602–2606, doi:10.3762/bjoc.14.238

Graphical Abstract
  • pyrrolinones 6 were the minor product and the β-keto amides 5a–f were obtained in higher, although still moderate, yields (Table 1). These results indicated that the acidic conditions required for the Boc deprotection favoured the unwanted side process (Scheme 3) and the aza-Michael/retro-Mannich sequence only
  • aza-Michael/retro-Mannich domino approach. A competing cyclisation to pyrrolin-4-ones limits the range of accessible γ-amino-derivatives and imposes the requirement for tertiary-substituted nitrogen in the aminoacyl moiety. There is no such limitation for the ω-amino derivatives. Preparation of α-C
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2018

Synthesis of cis-hydrindan-2,4-diones bearing an all-carbon quaternary center by a Danheiser annulation

  • Gisela V. Saborit,
  • Carlos Cativiela,
  • Ana I. Jiménez,
  • Josep Bonjoch and
  • Ben Bradshaw

Beilstein J. Org. Chem. 2018, 14, 2597–2601, doi:10.3762/bjoc.14.237

Graphical Abstract
  • , following our previously developed procedure, to give decahydroquinoline 1 [23]. The removal of the tert-butyl ester group with TFA, followed by treatment with LiOH in refluxing THF promoted a retro-aza-Michael reaction yielding the ring-opened product 3 [33]. The latter was trapped in situ with benzyl
  • bromide to furnish cyclohexenone 4 in 86% overall yield over the two steps from 1. Additionally, the overall transformation from the starting material 2 was also performed in a one-pot sequence involving six reactions, namely, an intermolecular Michael reaction, aldol cyclization, intramolecular aza
  • -Michael reaction, removal of a tert-butoxycarbonyl ester, base-promoted ring opening and tosylamide benzylation, without significant detrimental effect on the overall yield (see Supporting Information File 1). With the key precursor 4 in hand, the stage was set to study the Danheiser annulation step
PDF
Album
Supp Info
Letter
Published 09 Oct 2018

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • and 2-iodomesitylene (2a). Intramolecular cyclization leads to the iminofuranylium intermediate B which affords the cationic isoindolin-1-one structure C via subsequent intramolecular aza-Michael type rearrangement. This intermediate reacts in the final step with the electron-rich 2-iodomesitylene (2a
PDF
Album
Review
Published 30 May 2018

Diastereoselective auxiliary- and catalyst-controlled intramolecular aza-Michael reaction for the elaboration of enantioenriched 3-substituted isoindolinones. Application to the synthesis of a new pazinaclone analogue

  • Romain Sallio,
  • Stéphane Lebrun,
  • Frédéric Capet,
  • Francine Agbossou-Niedercorn,
  • Christophe Michon and
  • Eric Deniau

Beilstein J. Org. Chem. 2018, 14, 593–602, doi:10.3762/bjoc.14.46

Graphical Abstract
  • intramolecular aza-Michael reaction by means of both a chiral auxiliary and a catalyst for stereocontrol is reported for the synthesis of optically active isoindolinones. A selected cinchoninium salt was used as phase-transfer catalyst in combination with a chiral nucleophile, a Michael acceptor and a base to
  • provide 3-substituted isoindolinones in good yields and diastereomeric excesses. This methodology was applied to the asymmetric synthesis of a new pazinaclone analogue which is of interest in the field of benzodiazepine-receptor agonists. Keywords: asymmetric organocatalysis; Aza-Michael reaction; phase
  • carbon stereocenter alpha to the nitrogen [10][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34]. Though various metal or organic catalysts were used to promote the aza-Michael reaction in different syntheses for the creation of nitrogen–carbon bonds, phase-transfer catalysts were less studied
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • = tert-butyl) the reaction results in the formation of pyrazolo[1,5-a]pyrimidine derivative 90 as an additional product. The authors proposed that the bulky group had significantly slowed down the rate of electrophilic aromatic substitution at C-4 on 1H-pyrazol-5-amine due to which the aza-Michael
PDF
Album
Review
Published 25 Jan 2018

Dialkyl dicyanofumarates and dicyanomaleates as versatile building blocks for synthetic organic chemistry and mechanistic studies

  • Grzegorz Mlostoń and
  • Heinz Heimgartner

Beilstein J. Org. Chem. 2017, 13, 2235–2251, doi:10.3762/bjoc.13.221

Graphical Abstract
  • perhydroquinoxaline derivative 73. Synthesis of ethyl 7-aminopteridin-6-carboxylates 75 via a domino reaction. Synthesis of morhpolin-2-ones 80 from E-1 and β-aminoalcohols 78 through an initial aza-Michael addition and subsequent heterocyclization step. Reaction of 3-amino-5-arylpyrazoles 81 with dialkyl
PDF
Album
Review
Published 24 Oct 2017

Practical synthetic strategies towards lipophilic 6-iodotetrahydroquinolines and -dihydroquinolines

  • David R. Chisholm,
  • Garr-Layy Zhou,
  • Ehmke Pohl,
  • Roy Valentine and
  • Andrew Whiting

Beilstein J. Org. Chem. 2016, 12, 1851–1862, doi:10.3762/bjoc.12.174

Graphical Abstract
  • [24]. Reports of aza-Michael additions occurring in water indicated that the desired 8 could be synthesised under mild conditions, and we therefore decided to adapt these published conditions to larger scale work [25][26]. Initial attempts involving a 1:1 molar mixture of o-toluidine (5) and methyl
  • intermediate 7. Synthesis of THQ 10, by initial aza-Michael addition, followed by formation of the tertiary alcohol 9, which was then cyclised with H2SO4. Synthesis of THQ 14 by initial acylation, cyclisation with H2SO4 and reduction with borane·dimethyl sulphide complex. N-Alkylation of 13 and 14. Facile
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2016

Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents

  • Daniel Wiegmann,
  • Stefan Koppermann,
  • Marius Wirth,
  • Giuliana Niro,
  • Kristin Leyerer and
  • Christian Ducho

Beilstein J. Org. Chem. 2016, 12, 769–795, doi:10.3762/bjoc.12.77

Graphical Abstract
  • this producing organism, L-arginine is diastereoselectively hydroxylated to afford (3S)-3-hydroxy-L-arginine. The ring-closure reaction then occurs with formal inversion of the β-stereocenter (but quite likely through an aza-Michael addition to the α,β-unsaturated intermediate) [119][120][121]. The
  • studies [123][124]. It should also be noted that a biomimetic domino guanidinylation–aza-Michael-addition reaction for the synthesis of the capreomycidine scaffold has been developed, which only furnished the target structures as stereoisomeric mixtures though [125]. The epicapreomycidine-derived
PDF
Album
Review
Published 22 Apr 2016

(Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

  • Giorgos Koutoulogenis,
  • Nikolaos Kaplaneris and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2016, 12, 462–495, doi:10.3762/bjoc.12.48

Graphical Abstract
  • it near the enolate. In 2011, You and co-workers described the intramolecular desymmetrization of cyclohexadienones 69 catalyzed by thiourea 71, derived from cinchonine to give a bicyclic system 70 containing two chiral centers, utilizing an aza-Michael reaction (Scheme 24) [34]. The reaction
  • constructed via a desymmetrization aza-Michael reaction. That key intermediate 72 was afforded in 91% yield and 97% ee. (Scheme 25). In 2012, Cobb and co-workers developed a novel asymmetric Michael–Michael reaction between nitrohex-4-enoates 73 and nitroolefins 74 to construct a cyclohexene moiety, bearing
  • excellent diastereoselectivities (1.2:1–57:1 dr). In 2011, Chen, Xiao and co-workers, based on their previous work [77], described the aza-Michael–Michael cascade between substituted anilines 178 and nitroolefin enoates 172, utilizing a bifunctional cinchonine-derived thiourea 57 (Scheme 58) [79]. The
PDF
Album
Review
Published 10 Mar 2016

Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

  • Antonia Di Mola,
  • Maximilian Tiffner,
  • Francesco Scorzelli,
  • Laura Palombi,
  • Rosanna Filosa,
  • Paolo De Caprariis,
  • Mario Waser and
  • Antonio Massa

Beilstein J. Org. Chem. 2015, 11, 2591–2599, doi:10.3762/bjoc.11.279

Graphical Abstract
  • several methods to obtain rac-9 are available [32][33][34][35][36], it is worth noting that the asymmetric synthesis of 9 is one of the major obstacles when targeting the synthesis of chiral isoindolinones. The recently introduced intramolecular aza-Michael reactions of 2-substituted acrylates gave very
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2015

Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

  • Katherine M. Byrd

Beilstein J. Org. Chem. 2015, 11, 530–562, doi:10.3762/bjoc.11.60

Graphical Abstract
  • )-(+)-pseudoephedrine has emerged as a chiral auxiliary for the use in DCA reactions of α,β-unsaturated amides [49][50][51][52][53][54]. Badía and co-workers published a report where they performed aza-Michael additions to various α,β-unsaturated amides attached to (S,S)-(+)-pseudoephedrine [51] (Scheme 5
  • opposite face. Prior to the development of the diastereoselective aza-Michael reactions, (S,S)-(+)-pseudoephedrine had been used as a chiral auxiliary for the diastereoselective α-alkylation of amides [55][56][57]. This literature precedent aided in the development of the tandem conjugate addition–α
  • environment for the reaction to occur. The first part of this section will focus on the asymmetric 1,4-addition of carbon nucleophiles and the next two parts will discuss the addition of amines (aza-Michael addition) and phosphorous compounds. 2.4.1 Asymmetric 1,4-addition of carbon nucleophiles: Since its
PDF
Album
Review
Published 23 Apr 2015

Chiral phosphines in nucleophilic organocatalysis

  • Yumei Xiao,
  • Zhanhu Sun,
  • Hongchao Guo and
  • Ohyun Kwon

Beilstein J. Org. Chem. 2014, 10, 2089–2121, doi:10.3762/bjoc.10.218

Graphical Abstract
  • 2010, using the bifunctional chiral phosphine G1, bearing both Brønsted acid and Lewis base units, as the catalyst, asymmetric domino aza-MBH/aza-Michael reactions of activated alkenes and N-tosylimines with Michael acceptor moieties at their ortho positions were accomplished to give chiral 1,3
PDF
Album
Review
Published 04 Sep 2014

Asymmetric Ugi 3CR on isatin-derived ketimine: synthesis of chiral 3,3-disubstituted 3-aminooxindole derivatives

  • Giordano Lesma,
  • Fiorella Meneghetti,
  • Alessandro Sacchetti,
  • Mattia Stucchi and
  • Alessandra Silvani

Beilstein J. Org. Chem. 2014, 10, 1383–1389, doi:10.3762/bjoc.10.141

Graphical Abstract
  • post-Ugi cyclization, namely an intramolecular aza-Michael [24] reaction, which afforded compound 18 bearing the privileged spiro-diketopiperazine scaffold (Scheme 2). Spiro-diketopiperazines are present in many natural products [38][39][40] and have recently received much attention as
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2014

Total synthesis of (−)-epimyrtine by a gold-catalyzed hydroamination approach

  • Thi Thanh Huyen Trinh,
  • Khanh Hung Nguyen,
  • Patricia de Aguiar Amaral and
  • Nicolas Gouault

Beilstein J. Org. Chem. 2013, 9, 2042–2047, doi:10.3762/bjoc.9.242

Graphical Abstract
  • of (−)-epimyrtine have been described to date including the intramolecular allylsilane N-acyliminium ion cyclization [6], the organocatalytic aza-Michael reaction [7], the intramolecular Mannich reaction [8], and the iminium ion cascade reaction [9][10]. More efficient, convenient and highly
PDF
Album
Supp Info
Letter
Published 09 Oct 2013

The chemistry of amine radical cations produced by visible light photoredox catalysis

  • Jie Hu,
  • Jiang Wang,
  • Theresa H. Nguyen and
  • Nan Zheng

Beilstein J. Org. Chem. 2013, 9, 1977–2001, doi:10.3762/bjoc.9.234

Graphical Abstract
  • 15 by abstraction of a hydrogen atom directly. The addition of the enol form of α-ketoester 59 to 15 furnishes the Mannich adduct 60. A retro-aza-Michael reaction via enol 61 allows cleavage of the C–N bond to yield secondary aniline 62. Aniline 62 is first oxidized to imine 63, which is further
PDF
Album
Review
Published 01 Oct 2013

Efficient synthesis of β’-amino-α,β-unsaturated ketones

  • Isabelle Abrunhosa-Thomas,
  • Aurélie Plas,
  • Nishanth Kandepedu,
  • Pierre Chalard and
  • Yves Troin

Beilstein J. Org. Chem. 2013, 9, 486–495, doi:10.3762/bjoc.9.52

Graphical Abstract
  • reaction of chiral imines with enolates derived from Weinreb amides [13][14]. In previous work on the asymmetric synthesis of 2,6-disubstituted piperidines by C–N bond formation, we demonstrated that intramolecular aza-Michael ”type” cyclisation [15] using a β'-carbamate-α,β-unsaturated ketone
  • devised for the asymmetric synthesis of β’-amino-protected-α,β enones, a valuable intermediate for the synthesis of trans 2,6-disubstituted piperidines. The scope and limitation of the aza-Michael reaction were studied with a range of substrates. We are currently working on the application of this
PDF
Album
Supp Info
Letter
Published 06 Mar 2013
Other Beilstein-Institut Open Science Activities