Search results

Search for "diene" in Full Text gives 323 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Biphenylene-containing polycyclic conjugated compounds

  • Cagatay Dengiz

Beilstein J. Org. Chem. 2023, 19, 1895–1911, doi:10.3762/bjoc.19.141

Graphical Abstract
  • naphthazarin and triptycene units (Scheme 14) [48]. Naphthazarin derivatives are known to complex with boron moieties and metals to form electron-poor acene units. Through the Diels–Alder reaction involving dienophile 66, which was formed via the tautomerization of compound 65, and diene 67, compound 68 was
PDF
Album
Review
Published 13 Dec 2023

Anion–π catalysis on carbon allotropes

  • M. Ángeles Gutiérrez López,
  • Mei-Ling Tan,
  • Giacomo Renno,
  • Augustina Jozeliūnaitė,
  • J. Jonathan Nué-Martinez,
  • Javier Lopez-Andarias,
  • Naomi Sakai and
  • Stefan Matile

Beilstein J. Org. Chem. 2023, 19, 1881–1894, doi:10.3762/bjoc.19.140

Graphical Abstract
  • preferred to maximize orbital overlap (Figure 4) [63]. For π-acidic surfaces, the exo transition state VII is more completely accessible (Figure 4). The 3-hydroxy-2-pyrone (24) was selected as representative diene for the anionic [4 + 2] cycloaddition with maleimide 25 as standard dienophile to afford endo
PDF
Album
Review
Published 12 Dec 2023

Unprecedented synthesis of a 14-membered hexaazamacrocycle

  • Anastasia A. Fesenko and
  • Anatoly D. Shutalev

Beilstein J. Org. Chem. 2023, 19, 1728–1740, doi:10.3762/bjoc.19.126

Graphical Abstract
  • synthesis of novel PAMs with interesting properties is of great importance. Recently, we developed some approaches to 14-membered cyclic bis-semicarbazones [32][33][34][35] and bis-thiosemicarbazone [36], namely 7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-diones and -3,10-dithiones. The
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2023

Synthesis of 7-azabicyclo[4.3.1]decane ring systems from tricarbonyl(tropone)iron via intramolecular Heck reactions

  • Aaron H. Shoemaker,
  • Elizabeth A. Foker,
  • Elena P. Uttaro,
  • Sarah K. Beitel and
  • Daniel R. Griffith

Beilstein J. Org. Chem. 2023, 19, 1615–1619, doi:10.3762/bjoc.19.118

Graphical Abstract
  • accessed from tropone (via its η4-diene complex with Fe(CO)3) in a short sequence of steps: 1) nucleophilic amine addition and subsequent Boc-protection, 2) photochemical demetallation of the iron complex, and 3) an intramolecular Heck reaction. Minor modifications to the protocol enabled access to the
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • ) [97][98]. The S· radical is typically generated using a thermal initiator or a photochemical process [99][100]. 1,3-Diene polymers are most commonly modified via thiol–ene chemistry through the pendant vinyl after the polymerization [101] and this technique can be traced back to 1948 [102]. The
  • excellent temporal and spatial control of the available photochemical approach makes the technique especially viable for non-solution processes [103]. When a multifunctional thiol is used with diene-functionalized polymers, the approach becomes suitable for chemical crosslinking [103][104], vide infra. It
  • soluble upon radiation, respectively. Some early negative photoresists undergo a photochemical crosslinking process of 1,3-diene cyclic polymers [190] (cf. section 3.2), but such systems are no longer studied due to the poor resolution and sensitivity. On the other hand, positive resists based on
PDF
Album
Review
Published 18 Oct 2023

Functional characterisation of twelve terpene synthases from actinobacteria

  • Anuj K. Chhalodia,
  • Houchao Xu,
  • Georges B. Tabekoueng,
  • Binbin Gu,
  • Kizerbo A. Taizoumbe,
  • Lukas Lauterbach and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 1386–1398, doi:10.3762/bjoc.19.100

Graphical Abstract
  • structures were elucidated by NMR spectroscopy, resulting in the discovery of the first terpene synthases for (+)-δ-cadinol and (+)-α-cadinene, besides the first two bacterial (−)-amorpha-4,11-diene synthases. For other terpene synthases with functions reported from bacteria before the products were
  • , revealing that the functions of still many terpene synthase homologs are unknown. Some of the largest branches in this tree represent the homologs of epi-isozizaene synthase from Streptomyces coelicolor [24], caryolan-1-ol synthase from Streptomyces griseus [25], selina-4(15),7(11)-diene synthase from
  • that was identified by GC–MS as amorpha-4,11-diene (12, Figure 4). The structure of the product was confirmed through a preparative scale incubation of FPP (80 mg, 185 μmol) yielding pure 12 (1 mg, 4.9 μmol, 2.6%) for NMR spectroscopic analysis (Table S4, Figures S24–S31, Supporting Information File 1
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • , including terminal aliphatic alkenes, internal (cyclic) styrenes, and one example of a nonconjugated diene, suggesting RLT to be compatible with many functionalities. The diastereoselectivity of the reaction varies, with high anti-selectivity being achieved with cyclic styrenes and low diastereoselectivity
PDF
Album
Perspective
Published 15 Aug 2023

Two new lanostanoid glycosides isolated from a Kenyan polypore Fomitopsis carnea

  • Winnie Chemutai Sum,
  • Sherif S. Ebada,
  • Didsanutda Gonkhom,
  • Cony Decock,
  • Rémy Bertrand Teponno,
  • Josphat Clement Matasyoh and
  • Marc Stadler

Beilstein J. Org. Chem. 2023, 19, 1161–1169, doi:10.3762/bjoc.19.84

Graphical Abstract
  • lanostan-8,24(31)-diene-21-oic acid skeleton supported by 2D NMR cross peaks in the 1H,1H COSY, HMBC, and HSQC spectra, suggesting a closely related structure to forpinioside A [23][28]. The C-5, C-10, C-13, and C-14 configurations were assigned not only from the biogenetic considerations, but also from
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2023

The unique reactivity of 5,6-unsubstituted 1,4-dihydropyridine in the Huisgen 1,4-diploar cycloaddition and formal [2 + 2] cycloaddition

  • Xiu-Yu Chen,
  • Hui Zheng,
  • Ying Han,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 982–990, doi:10.3762/bjoc.19.73

Graphical Abstract
  • ]naphthyridine and 2-azabicyclo[4.2.0]octa-3,7-diene derivatives. Results and Discussion Initially, the reaction conditions were briefly examined by using isoquinoline (1), dimethyl acetylenedicarboxylate (DMAD, 2) and 5,6-unsubstituted 1,4-dihydropyridine 3 as standard reaction (Table 1). The three-component
  • acetylenedicarboxylate and 5,6-unsubstituted 1,4-dihydropyridines with N–Ar groups did not give the above isoquinolino[1,2-f][1,6]naphthyridines, but the unique 2-azabicyclo[4.2.0]octa-3,7-diene-7,8-dicarboxylates were isolated in moderate yields. These products were obviously produced from the formal [2 + 2
  • -tetrahydrocyclopenta[b]pyrrole derivatives 6, it was found that the 1,4-dihydropyridinyl ring of the substrate was converted to a fused pyrrole ring, which might be a result from a rearrangement process of the formed 2-azabicyclo[4.2.0]octa-3,7-diene-7,8-dicarboxylates 5a–o at elevated temperature. The chemical
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • diene [90][91]. In addition, these results support the hypothesis that the decarboxylative cyclization can occur through subsequent selective 6-exo-trig radical addition. It also has been reported that it is difficult to detect which intermediate is really involved, since they are easily
  • interconvertible to each other by hydration or dehydration, i.e., a plausible precursor of the allylic alcohol would be the diene, and vice versa [90]. Since both 8 and 10 are easily obtainable from 2 by Mozoroki–Heck coupling with commercially available 2-methyl-3-buten-2-ol, ester hydrolysis (LiOH in THF/H2O
  • radical addition–fragmentation on the latter and most likely to shift the regioselectivity towards 6-exo-trig by a favorable interplay of polar effects [99] failed and furnished only the 1,3-diene 10. Unfortunately, when substrate 10 was subjected to the reaction conditions shown above, only tarry
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • optimized conditions in hand, diverse 2-arylated pyridines were screened resulting in the corresponding products 74 in good yields. Allene, a cumulated diene and an important building block in organic synthesis has versatile biological properties and is also an important subunit in various natural products
  • with various tethered alkenes, such as 1,1-disubstituted alkenes, styrene, diene, trisubstituted alkene and enamines. To get insights into the mechanism the authors conducted additional experiments including deuterium labelling reactions and proposed the mechanism depicted in Scheme 37b. Initially, the
PDF
Album
Review
Published 12 Jun 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • prepared by Wittig methylenation of commercially available bis(2-formylphenyl) ether (119), whereas a formylation–Wittig methylenation sequence of commercial diphenylsulfone (120) and protected bis(2-bromophenyl)amine 121 afforded the S- and N-tethered diene, respectively. Ruthenium (2nd generation Hoveyda
PDF
Album
Review
Published 22 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • (Scheme 51B) [94]. Giving only a single diastereomer with good enantioselectivity using a Rh/bicyclo[2.2.2]octane-2,5-diene (bod) complex, a broad variety of spiro compounds were isolated in good to excellent yields. The authors have also shown that this skeleton provides a great opportunity to prepare
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
PDF
Album
Review
Published 24 Apr 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • allene 14, giving a boryl diene 16. A Cope rearrangement of the boryl diene 16 followed by transborylation gave the dienyl boronic ester 18 and regenerated the catalyst (Scheme 5). Chang reported the alkoxide-promoted hydroboration of N-heteroarenes with HBpin, the first explicit example of a B‒N/B‒H
PDF
Album
Review
Published 21 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • 14 shares the common [5-8-5] tricyclic framework emblematic of the fusicoccan series, albeit cycloaraneosene (14) does not have any heteroatom (Scheme 1) [16]. Focusing on the B–C bicyclic fragment, they used diene 10, readily available from cyclopentane-1,3-dione (9), as the precursor for installing
  • steps from accessible methylcyclopentenone 16 (Scheme 2). The sequence included a Mukaiyama–Michael reaction with silyl enol 15 followed by a Tsuji alkylation. With diene 17 in hands, the RCM reaction was performed by addition of G-II catalyst and furnished the expected C5-C8 bicyclic framework 18 in 95
  • protection of the alcohol function as a silyl ether leading to diene 71, the RCM was performed in refluxing hexane and dactylol (72) was isolated in 17% overall yield after silyl ether removal [18][37]. Asteriscanolide (2), isolated in 1985 from the hexane extract of the plant Astericus aquaticus, is a
PDF
Album
Review
Published 03 Mar 2023

Germacrene B – a central intermediate in sesquiterpene biosynthesis

  • Houchao Xu and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 186–203, doi:10.3762/bjoc.19.18

Graphical Abstract
  • pristinaespiralis 1 is an intermediate in the cyclisation of farnesyl diphosphate (FPP) to selina-4(15)-7(11)-diene [36]. Several SdS enzyme variants have been constructed by site-directed mutagenesis, including the enzyme variants D83E, E159D and W304L, for which the product spectrum is shifted towards 1 as the
  • , and has been isolated from Cryptotaenia japonica [46], Bunium cylindricum [47], an unidentified Pilocarpus sp. [48], and Aristolochia triangularis [49]. Germacrene B (1) is also easily cyclised to selinanes. Percolation of 1 through alumina yields a 1:1 mixture of selina-3,7(11)-diene (9) and γ
  • discussed in the following sections. Eudesmanes from I1 The eudesmane sesquiterpenes derived from cation I1 are summarised in Scheme 7. Cation I1 can either be deprotonated to yield selina-3,7(11)-diene (9), (+)-γ-selinene (10) or (+)-selina-4,7(11)-diene (18), or captured by water resulting in juniper
PDF
Album
Review
Published 20 Feb 2023
Graphical Abstract
  • using diethyl (2-methylallyl)phosphonate gave diene ketone S-18 [13]. Here, we envisioned that a Mannich reaction would introduce the required α,β-unsaturated carbonyl system needed for the following intramolecular Diels–Alder reaction, that likely would proceed directly under these conditions. This
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • linkage of several insect pheromones. Cahiez paved the way of this strategy in 2008, showing that (E)-dodeca-9,11-dien-1-yl acetate (2), the sex pheromone of red bollworm moth (Diparopsis castanea), which contains a terminal diene, could be obtained at a laboratory scale (ca. 200 mg) by means of iron
  • introduction of the C7–C8 linkage by a key iron-mediated cross-coupling sequence between the suitable α,ω-difunctionalized Grignard reagent and 1-bromopenta-1,3-diene as the electrophile (Scheme 6) [32]. A classic drawback of the use of dienyl halides as coupling partners is their intrinsic thermal instability
  • -coupling systems involving this reagent are thus particularly scarce, and few examples are reported, using for some of them Ni-based catalysts [33]. 1-Bromopenta-1,3-diene used in the synthesis of 4 (Scheme 6) is not an exception. The expected (E,E) isomer was easily obtained from sorbic acid, a renewable
PDF
Album
Perspective
Published 14 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • helpful when dealing with sensitive dienes. A nice illustration of this is afforded by De Lucchi’s simple synthesis of barrelene (33) from oxepin (29, Scheme 8b) [52]. Oxepin’s equally unstable valence tautomer 30 (benzene oxide) is quite reactive as a diene in Diels–Alder reactions, and can react with 7
  • ]. For example, after a first Diels–Alder reaction with furan followed by dehydrochlorination, the resulting dithiin-tetroxide dienophile 38 is reacted with sulfolane (as a buta-1,3-diene precursor), to elaborate a propellane system with a fused cyclohexene ring. Reductive desulfonylation of the dithiane
  • -tetroxide ring gives the cyclohexa-1,4-diene intermediate 39. This intermediate can then be easily oxidized to afford the aromatic adduct 40, which is the known cycloaddition product of furan and benzyne. Although this synthetic equivalent of benzyne requires a lengthy work-around, all synthetic operations
PDF
Album
Review
Published 02 Feb 2023

Revisiting the bromination of 3β-hydroxycholest-5-ene with CBr4/PPh3 and the subsequent azidolysis of the resulting bromide, disparity in stereochemical behavior

  • Christian Schumacher,
  • Jas S. Ward,
  • Kari Rissanen,
  • Carsten Bolm and
  • Mohamed Ramadan El Sayed Aly

Beilstein J. Org. Chem. 2023, 19, 91–99, doi:10.3762/bjoc.19.9

Graphical Abstract
  • different mesh numbers. Single crystals of both were obtained by slow evaporation from diethyl ether. The less polar, minor material gave ice-white needles, and an X-ray single crystal structure determination revealed the product to be cholesta-3,5-diene (9, Figure 3). The 1H NMR data of 9 are in full
  • these results, the mechanistic interpretation depicted in Scheme 2 can be provided. Under Appel conditions with a combination of CBr4 and PPh3, 3β-hydroxycholest-5-ene (1) leads to two products, cholesta-3,5-diene (9) and 3β-bromocholest-5-ene (4). Both 9 and 4 result from intermediate 10, in which the
  • C3 hydroxy of 1 is activated. Deprotonation of 10 at C2 with bromide as base provides diene 9 as the minor product. Bromide 4 is formed via cyclopropyl cation 11, which is generated from 10 by loss of triphenylphosphine oxide being supported by involvement of the Δ5 π-bond electrons from the α-face
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • led to common scaffolds 47 and diene 48 after subsequent elimination. Those molecules serve as templates for Ni-based radical-based sp3–sp2 coupling and single-electron transfer (SET)-based [3 + 2] coupling, respectively (Scheme 4). Initial attempts to realize the [3 + 2] radical coupling with CAN led
PDF
Album
Review
Published 02 Jan 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • diastereoselectivity in 58% on a 3 g scale. Subsequently, vinyl halide 48 was converted to diene 50 by Suzuki coupling with potassium vinyltrifluoroborate (49) in 90% yield (Scheme 8). The C7–C8 bond formation from a bridgehead carbocation was a real challenge to close the 7-membered ring. To achieve this, the
  • oxygen ene reaction involving the electron-rich olefin allowed the formation of an aldehyde, which was directly cleaved by an iridium-catalyzed deformylation, affording 52 in one-pot [36]. Deprotonation with KHMDS allowed the formation of an electron-rich diene which could again react with singlet oxygen
PDF
Album
Review
Published 12 Dec 2022

Characterization of a new fusicoccane-type diterpene synthase and an associated P450 enzyme

  • Jia-Hua Huang,
  • Jian-Ming Lv,
  • Liang-Yan Xiao,
  • Qian Xu,
  • Fu-Long Lin,
  • Gao-Qian Wang,
  • Guo-Dong Chen,
  • Sheng-Ying Qin,
  • Dan Hu and
  • Hao Gao

Beilstein J. Org. Chem. 2022, 18, 1396–1402, doi:10.3762/bjoc.18.144

Graphical Abstract
  • Talaromyces wortmannii ATCC 26942. Heterologous expression reveals that TadA catalyzes the formation of a new fusicoccane-type diterpene talaro-7,13-diene. D2O isotope labeling combined with site-directed mutagenesis indicates that TadA might employ a different C2,6 cyclization strategy from the known
  • fusicoccane-type diterpene synthases, in which a neutral intermediate is firstly formed and then protonated by an environmental proton. In addition, we demonstrate that the associated cytochrome P450 enzyme TadB is able to catalyze multiple oxidation of talaro-7,13-diene to yield talaro-6,13-dien-5,8-dione
  • Talaromyces wortmannii ATCC 26942, in which TadA is identified to be a new FC-type DTS responsible for the formation of talaro-7,13-diene, and the associated P450 enzyme TadB is characterized to be a multifunctional enzyme, converting talaro-7,13-diene to highly oxygenated talaro-6,13-dien-5,8-dione. Results
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2022

Preparation of an advanced intermediate for the synthesis of leustroducsins and phoslactomycins by heterocycloaddition

  • Anaïs Rousseau,
  • Guillaume Vincent and
  • Cyrille Kouklovsky

Beilstein J. Org. Chem. 2022, 18, 1385–1395, doi:10.3762/bjoc.18.143

Graphical Abstract
  • –O bond from an 1,2-oxazine, itself obtained by a nitroso Diels–Alder reaction from a chiral nitroso derivative and a functionalized diene (Figure 3). The nitroso Diels–Alder cycloaddition reaction has been well studied and has been used as a powerful tool for synthesis [19][20][21][22]. We have
  • reported extensive studies on the regio-and stereoselectivity of nitroso Diels–Alder reactions between various nitroso derivatives and functionalized dienes [23]. These studies led to the selection of enol phosphates as ketone precursors for the diene functionalization. Enol phosphates display several
PDF
Album
Full Research Paper
Published 04 Oct 2022
Other Beilstein-Institut Open Science Activities