Search results

Search for "enones" in Full Text gives 131 result(s) in Beilstein Journal of Organic Chemistry.

Solvent-free synthesis of enantioenriched β-silyl nitroalkanes under organocatalytic conditions

  • Akhil K. Dubey and
  • Raghunath Chowdhury

Beilstein J. Org. Chem. 2021, 17, 2642–2649, doi:10.3762/bjoc.17.177

Graphical Abstract
  • experiments reveal that the presence of a β-silyl group in the enones is crucial for high reactivity under the optimized reaction conditions. Keywords: β-silyl α,β-unsaturated carbonyl compounds; β-silyl nitroalkanes; chiral organosilanes; organocatalysis; solvent-free synthesis; Introduction
  • ][35][36]. In this context, Huang, Fu and co-workers reported carbene-catalyzed enantioselective formal [4 + 2] annulation reactions of β-silyl enones with enals and with active acetic esters (Scheme 1g) for the preparation of chiral organosilanes [34][35][36]. Very recently, during the final stage of
  • our work, the same group disclosed an organocatalyzed conjugate addition of thiols to β-silyl enones for the synthesis of chiral α-mercaptosilanes (Scheme 1g) [36]. As a part of our ongoing program for the development of asymmetric catalytic approaches for the synthesis of enantioenriched
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2021

Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction

  • Dušan Đ. Škorić,
  • Olivera R. Klisurić,
  • Dimitar S. Jakimov,
  • Marija N. Sakač and
  • János J. Csanádi

Beilstein J. Org. Chem. 2021, 17, 2611–2620, doi:10.3762/bjoc.17.174

Graphical Abstract
  • synthesis of these compounds, we have been working to establish reliable protocol for the Schmidt synthesis of fused tetrazoles from bile acid ketones and enones that would have potential for application in the synthesis of other steroidal molecules. New B-ring- and C-ring-fused steroidal tetrazoles
  • selective acetylation [43], followed by oxidation. Enones 4 and 8 were prepared by dehydrogenation of corresponding ketones with SeO2 in refluxing acetic acid [44]. Microwave-assisted heating of the reaction mixture in a closed vessel (150 °C) helped in decreasing the reaction time for dehydrogenation
  • significant improvement in the yield. In all cases where TMSN3 was used as an azide source, the lactam byproduct was not detected. Of special interest for us was the synthesis of conjugated tetrazoles from enones. Since the oxygen atom in the enone form has a lower affinity towards Lewis acid, the reactivity
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • formation of HOMO raised dearomative aza-dienamine-type intermediates, which undergo direct aza-Michael addition to β-trifluoromethyl enones to afford N-functionalized heteroarenes 121 efficiently in moderate to excellent yields, albeit with low to fair enantioselectivity. However, asymmetric aza-Michael
PDF
Album
Review
Published 18 Oct 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • addition of cyclic 1,3‐dicarbonyl compounds, including 4-hydroxycoumarins 1, to α,β‐unsaturated enones 2 (Scheme 1). This versatile Michael reaction afforded (S)-warfarin (3a) and other Michael adducts 3 in high yields and good enantiomeric excess (ee), using (4S,5S)-4,5-diphenylimidazolidine-2-carboxylic
  • addition of 4-hydroxycoumarin (1) by the Re face of the enones 2 through a bifunctional modified binaphthyl organocatalyst 18 with primary amine [37]. The reaction occurs through the activation of the enone substrate by formation of an iminium ion intermediate and, in the presence of an acid additive
  • described by Herrera et al. for the first time using primary aromatic diamines 31 as organocatalysts. The application of this class of catalysts for the Michael asymmetric addition of 4-hydroxycoumarins 1 to enones 2 is interesting from the point of view of organocatalysis, since the presence of two primary
PDF
Album
Review
Published 03 Aug 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • ) [45]. In 2020, Ramachary et al. reported the 1,3-dipolar cycloaddition of various enones 43 and 46 with less reactive vinyl/alkyl/aryl azides 44 via an enolate-mediated organocatalyst. This protocol provides diverse double C- and N-vinylated 1,2,3-triazole derivatives and C-vinylated 1,2,3-triazole
  • the use of a catalytic amount of DBU in DMSO at room temperature [46]. The cyclic enones 43 were reacted with the α-azidostyrenes 44 containing groups such as Cl, F, and OMe to form the corresponding products (Scheme 16). The o-, m-, and p-tolylvinyl azides facilitated a good to excellent yield of the
  • -substituted cyclic enones treated successfully with azidophiles to give good yield of the corresponding double C- and N-vinylated 1,2,3-triazole derivatives 45. Then, the reaction was extended to some aryl and alkyl azides and different cyclic enones. Moreover, a variety of vinyl, alkyl, and aryl azides were
PDF
Album
Review
Published 13 Jul 2021

Organocatalytic asymmetric Michael/acyl transfer reaction between α-nitroketones and 4-arylidenepyrrolidine-2,3-diones

  • Chandrakanta Parida and
  • Subhas Chandra Pan

Beilstein J. Org. Chem. 2021, 17, 1447–1452, doi:10.3762/bjoc.17.100

Graphical Abstract
  • development of catalytic asymmetric conjugate addition reactions [3][4][5]. In particular, the conjugate addition of nitroalkanes and their derivatives to enones has drawn the attention of organic chemists as the corresponding products can be chemoselectively converted to a variety of useful structures [6
  • ]. Thus a variety of methods has been developed with a range of different catalysts [7][8][9]. One of the challenges is to employ highly substituted enones in the reaction. Indeed, additional substituents, especially at the α-position of enones/activated olefins, decreases the reactivity significantly
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
PDF
Album
Review
Published 12 May 2021

Recent advances in palladium-catalysed asymmetric 1,4–additions of arylboronic acids to conjugated enones and chromones

  • Jan Bartáček,
  • Jan Svoboda,
  • Martin Kocúrik,
  • Jaroslav Pochobradský,
  • Alexander Čegan,
  • Miloš Sedlák and
  • Jiří Váňa

Beilstein J. Org. Chem. 2021, 17, 1048–1085, doi:10.3762/bjoc.17.84

Graphical Abstract
  • Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic 10.3762/bjoc.17.84 Abstract The transition metal (palladium)-catalysed asymmetric 1,4-addition of arylboronic acids to conjugated enones belong to the most important and emerging strategies
  • given combination of enone and arylboronic acid. Keywords: asymmetric reaction; boronic acid; conjugated enones; chromones; enantioselective catalysis; Michael addition; Pd complexes; Introduction The asymmetric 1,4-addition of arylboronic acids to conjugated cyclic enones and chromones is a very
  • (phosphines, NHC-carbenes, bisoxazolines, pyridine-oxazolines, and miscellaneous) is used. Review Catalytic systems based on phosphine ligands A pioneering work on the enantioselective addition of boron-derived carbon nucleophiles to cyclic enones was published by the group of Miyaura et al. in 2005 [32
PDF
Album
Review
Published 10 May 2021

Synthesis of β-triazolylenones via metal-free desulfonylative alkylation of N-tosyl-1,2,3-triazoles

  • Soumyaranjan Pati,
  • Renata G. Almeida,
  • Eufrânio N. da Silva Júnior and
  • Irishi N. N. Namboothiri

Beilstein J. Org. Chem. 2021, 17, 762–770, doi:10.3762/bjoc.17.66

Graphical Abstract
  • synthesis of new functionalized 1,2,3-triazoles. Keywords: azoles; cycloaddition; enones; heterocycles; 1,2,3-triazoles; Introduction 1,2,3-Triazoles are significant non-natural heterocyclic scaffolds with extensive applications in biochemistry, agrochemistry and materials chemistry [1][2][3][4][5]. This
PDF
Album
Supp Info
Letter
Published 31 Mar 2021
Graphical Abstract
  • nucleophiles [27][28][29][30]. Thionaphthols, however, are overlooked in sulfa-Michael addition reactions. And to our best knowledge, no study is present concerned with SMAs with naphthalene-1-thiol as the nucleophile for the addition to enones. Encouraged by the good results obtained with enantioselective
  • transition state model to explain the origin of the stereoinduction was proposed (Scheme 2), according to the Houk’s Brønsted acid hydrogen bonding model. Guo’s computational work in 2017 on the sulfa-Michael addition of thiols to enones in the presence of cinchona alkaloid-type organocatalysts showed that
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
  • iminium ion 192 by Lewis acid activation was suggested by the authors (Scheme 46). The resulting CF3-substituted β-amino ketones 190 could then be efficiently transformed in a one-pot procedure into the corresponding CF3-substituted enones 191 upon Brønsted acid treatment. Langlois and Billard then
PDF
Album
Review
Published 03 Feb 2021

Dawn of a new era in industrial photochemistry: the scale-up of micro- and mesostructured photoreactors

  • Emine Kayahan,
  • Mathias Jacobs,
  • Leen Braeken,
  • Leen C.J. Thomassen,
  • Simon Kuhn,
  • Tom van Gerven and
  • M. Enis Leblebici

Beilstein J. Org. Chem. 2020, 16, 2484–2504, doi:10.3762/bjoc.16.202

Graphical Abstract
  • an ene reaction of β-citronellol and Diels–Alder reactions of α-terpinene and (5-methylfuran-2-yl)methanol [46] as well as the synthesis of cyclopent-2-enones from furans [47] and the synthesis of diverse γ-lactam scaffolds [48]. Conversions larger than 90% were achieved for all reactions [46][47][48
PDF
Album
Review
Published 08 Oct 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • could proceed catalytically and with a broad scope using amine catalyst 86 with enones 87 and alkenes 88 without the need for an external photocatalyst (Scheme 11b) [49]. The mechanism proposed by Alemán begins with the condensation of 86 with 87 to generate iminium ion 89, which has a suitably low
  • carbonyl electrophilicity [105]. The use of chiral Lewis acids can induce asymmetry [106]. Yoon et al. applied this well-known form of catalysis to a photocatalytic system using enones 269 and 270 (Scheme 43a) [107]. Mechanistic studies of a closely related achiral reaction [20], showed this reaction
  • and enantioselectivities (27 examples, up to >99:1 er). Yoon et al. have also shown that these types of Lewis acid complexes can be used in an energy transfer process for the [2 + 2] cycloaddition of enones 288 with alkenes 289 (Scheme 47) [113][114]. The triplet energy of 288, when complexed to the
PDF
Album
Review
Published 29 Sep 2020

Formation of an exceptionally stable ketene during phototransformations of bicyclo[2.2.2]oct-5-en-2-ones having mixed chromophores

  • Asitanga Ghosh

Beilstein J. Org. Chem. 2020, 16, 2297–2303, doi:10.3762/bjoc.16.190

Graphical Abstract
  • less congested one has been observed. The ketenes were exceptionally stable both in air and solution. Its stability studies in acetonitrile through time-dependent UV absorption spectra revealed that it remained almost unchanged at least for a couple of weeks. Keywords: α,β- and β,γ-enones; bridgehead
  • position; ketene; mixed chromophores; Introduction Enones exhibit a rich and diverse photochemistry. The deep-seated photochemical rearrangements found in these systems have attracted numerous mechanistic studies. In this context, the photochemistry of α,β-enones A and β,γ-enones B (Figure 1) has become
  • an actively researched area for more than two decades [1][2][3][4][5][6], particularly because of their fascinating photochemical rearrangements. In view of their rich photochemistry, it may be expected that incorporation of both enones into the same molecule C would lead to a variety of more
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2020

Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis

  • Shahboz Yakubov and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2020, 16, 2151–2192, doi:10.3762/bjoc.16.183

Graphical Abstract
  • optimization, this is a plausible suggestion. However, the lack of reactivity of certain PSCats due to them absorbing different visible (white LED) wavelengths cannot be ruled out. 3.3.2 Enones as directing groups: Related to, and following their observations with cyclic ketone-containing substrates, Lectka
  • and co-workers reported that enones also served as directing groups for PS TTET fluorinations [206]. C(sp3)–H bonds that were proximal (5 or 6 carbon atoms away) or distal (5 or 6 carbon atoms away) from the enone underwent C(sp3)–H fluorination to afford the products 56–59 in modest to very good
PDF
Album
Review
Published 03 Sep 2020

Reactions of 3-aryl-1-(trifluoromethyl)prop-2-yn-1-iminium salts with 1,3-dienes and styrenes

  • Thomas Schneider,
  • Michael Keim,
  • Bianca Seitz and
  • Gerhard Maas

Beilstein J. Org. Chem. 2020, 16, 2064–2072, doi:10.3762/bjoc.16.173

Graphical Abstract
  • -substituted iminium groups with electron-rich (hetero)aromatics are known [18][24]. Furthermore, 1-(trifluoromethyl)indenes have recently been generated by cationic cyclization of β-aryl trifluoromethyl enones under superacid conditions [42][43][44]. Styrenes are also known to behave as dienes in [4 + 2
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2020

Pauson–Khand reaction of fluorinated compounds

  • Jorge Escorihuela,
  • Daniel M. Sedgwick,
  • Alberto Llobat,
  • Mercedes Medio-Simón,
  • Pablo Barrio and
  • Santos Fustero

Beilstein J. Org. Chem. 2020, 16, 1662–1682, doi:10.3762/bjoc.16.138

Graphical Abstract
  • bicyclic compound since the double and triple bonds are too distant. In a following paper by Billard and co-workers, the PKR of oxygen-containing 1,7-enynes was assayed, affording trifluoromethylated oxygenated bicyclic enones (Scheme 9) [48]. Under classical stoichiometric conditions (reaction with Co2(CO
  • afforded the corresponding products 59 in good to excellent yields (Scheme 36). The authors then studied the elimination of the trifluoromethyl group from this library of PK adducts, building upon their own experience in the field (vide supra, Scheme 34). Thus, by subjecting enones 59 to treatment with DBU
  • in wet nitromethane under reflux, clean conjugate addition/detrifluoromethylation was observed, in this case followed by retro-Michael reaction of nitromethane achieving enones 65 in moderate to good yields (Scheme 37). Interestingly, the overall reaction sequence results in the formal inversion of
PDF
Album
Review
Published 14 Jul 2020

Fluorohydration of alkynes via I(I)/I(III) catalysis

  • Jessica Neufeld,
  • Constantin G. Daniliuc and
  • Ryan Gilmour

Beilstein J. Org. Chem. 2020, 16, 1627–1635, doi:10.3762/bjoc.16.135

Graphical Abstract
  • disclosed (Figure 1B). Seminal reports by Nevado [41][42] and Gouverneur [43] enabled the synthesis of α-fluoroketones and -enones from terminal and internal alkynes, thereby mitigating difluoroketone formation: This is commonly observed in the fluorination of alkynes using stoichiometric electrophilic
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
  • from that of enones. The latter underwent the [2 + 2] annulation with olefins at their olefinic center to yield cyclobutane derivatives, and rarely undergo oxetane formation completely. The reaction parameters such as solvent affected the balance between the cyclobutane and oxetane formation. Whereas
PDF
Album
Review
Published 22 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • a suitable Michael acceptor 24.2 to obtain the corresponding allylation product 24.3 after a desulfonylation. Enones can also be subject to SET reductions through photoredox catalysis, and this can lead to [2 + 2] cycloadditions [2][108]. Similar intermediates can also be generated through the
PDF
Album
Review
Published 29 May 2020

Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents

  • Yafei Guo and
  • Syuzanna R. Harutyunyan

Beilstein J. Org. Chem. 2020, 16, 1006–1021, doi:10.3762/bjoc.16.90

Graphical Abstract
  • in recent years, many strategies have been reported for their highly enantioselective synthesis. However, while catalytic asymmetric C–C bond formations by ACAs of organometallics is a routine procedure for additions to common Michael acceptors, such as enones and enoates, examples of catalytic
PDF
Album
Review
Published 14 May 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • ratios. Both cyclic (117 and 118) and acyclic (119,120) ketones could be silylated efficiently (Scheme 23). Interestingly, cyclic enones conjugated to an external double bond, as in 121, upon exposure to these conditions resulted in an excellent selectivity for the 1,6-addition and in high ee for product
PDF
Album
Review
Published 15 Apr 2020

Synthesis of 3-alkenylindoles through regioselective C–H alkenylation of indoles by a ruthenium nanocatalyst

  • Abhijit Paul,
  • Debnath Chatterjee,
  • Srirupa Banerjee and
  • Somnath Yadav

Beilstein J. Org. Chem. 2020, 16, 140–148, doi:10.3762/bjoc.16.16

Graphical Abstract
  • following three categories: (i) by Wittig or Doebner reaction of indoles bearing a 3-aldehyde group; (ii) by 1,4- or 1,2-addition of α,β-enones or carbonyl compounds, followed by oxidation or elimination, respectively; (iii) by Pd-catalysed oxidative coupling of indoles with activated alkenes. Several
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2020

Rapid, two-pot procedure for the synthesis of dihydropyridinones; total synthesis of aza-goniothalamin

  • Thomas J. Cogswell,
  • Craig S. Donald and
  • Rodolfo Marquez

Beilstein J. Org. Chem. 2020, 16, 135–139, doi:10.3762/bjoc.16.15

Graphical Abstract
  • described above. Rewardingly, Hosomi–Sakurai allylation of the conjugated imine intermediate proceeded to afford the desired diene 10 in working yield (35%). The formation of diene 10 is significant as the corresponding α,β-enones and α,β-enals undergo exclusive conjugate addition under Hosomi–Sakurai
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2020
Other Beilstein-Institut Open Science Activities