Search results

Search for "lactams" in Full Text gives 136 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction

  • Dušan Đ. Škorić,
  • Olivera R. Klisurić,
  • Dimitar S. Jakimov,
  • Marija N. Sakač and
  • János J. Csanádi

Beilstein J. Org. Chem. 2021, 17, 2611–2620, doi:10.3762/bjoc.17.174

Graphical Abstract
  • [21], this variation of the reaction draws considerably less attention in comparison to the usage in the synthesis of amides or lactams. As presented in Figure 2, after initial formation of the azidohydrine by addition of hydrazoic acid to the ketone, the reaction can undergo two pathways. In the
  • . Intramolecular Schmidt reaction of alkyl azides and ketones, which follows the first pathway in the mechanism, found especially broad application in the synthesis of different lactams [23][24]. Serious drawbacks of the Schmidt reaction for tetrazole synthesis are the need for a large excess of the hazardous
  • , employing hydrazoic acid, was used in transformations of some steroidal ketones to the corresponding lactams and tetrazoles. Often in these cases, the yield of the tetrazole was low, and the steroids used as starting material lacked potentially reactive functional groups [36][37][38][39]. Referring to the
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
  • -alkylarenesulfonamides, N-fluoropyridinium salts and derivatives, N-fluoroquinuclidium salts, N-fluoro-trifluoromethanesulfonimide, N-fluoro-sultams, N-fluoro-benzothiazole dioxides, N-fluoro-lactams, N-fluoro-o-benzenedisulfonimide, N-fluoro-benzenesulfonimide, 1-alkyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane salts, N
  • al. allowed these lactams to react with 0.05% 18F2/Ne in a freon and obtained the N-[18F]fluorolactams 12-1 in good yields (Scheme 27, entry 1). The 18F-transfer ability was demonstrated by fluorination reactions with various Grignard reagents in up to 51% yield (Scheme 27, entry 2). In the event the
PDF
Album
Review
Published 27 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • external Lewis acid and trimethylaluminum as a methyl source (Scheme 7) [61]. The late-stage methylation of simple heterocyclic motifs was initially investigated using (S,S)-Mn(CF3–PDP) (21), providing methylated lactams 22a–e. Notably, methylation site selectivity was observed for the carbon atoms
PDF
Album
Review
Published 26 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • nucleophiles beyond the usually employed dicarbonyl compounds to cyanoacetates, nitroacetates, fluoroacetates, lactones, lactams, and aromatic and heteroaromatic carbonyl compounds. The reactions were carried out at higher temperatures (120 °C) than used in the previous protocols involving more reactive
  • -biphenyl)]Cl as a catalyst (Scheme 8) [41]. Under mild conditions, functionalized five and six-membered lactams 14 were synthetized in excellent yields (90–99%), including those of the lactams in which a quaternary center was constructed. Only exo-trig cyclization products were obtained, and substrates
  • (Scheme 8B). An asymmetric version of this reaction was developed in 2014 by the Gandon group [42], who employed the chiral bis(phosphine)digold(I) complex 18 as a pre-catalyst in combination with silver triflate as an activator (Scheme 9). They obtained lactams 17 by cyclization of α-substituted N
PDF
Album
Review
Published 07 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • pharmacy as highly biological active compounds. Among this group of nitrogenated heterocycles, β-lactams (azetidin-2-ones) have reached especial attention [78][79][80], being easily accessible from β-aminoesters. A stereoselective synthesis of 1-substituted 2-azaspiro[3.3]heptanes 45 (n = 1) was reported
  • the asymmetric synthesis of a variety of aromatic, heteroaromatic, and aliphatic 1-substituted 2,6-diazaspiro[3.3]heptanes 48, with overall yields ranging from 74 to 94% (Scheme 16). Asymmetric synthesis of β–lactams β-Lactam antibiotics are important drug class of antibacterial agents [83] and in the
  • successively into β-amino esters 51, and the corresponding β-lactams 52 with high optical purity (Scheme 17) [89]. The absolute configurations of compounds 52 were obtained by the comparison of the signs of specific rotation of 52 with R = Ph(CH2)2, with that of known (R)-4-(2-phenylethyl)azetidin-2-one. A 6/4
PDF
Album
Review
Published 12 May 2021

β-Lactamase inhibition profile of new amidine-substituted diazabicyclooctanes

  • Zafar Iqbal,
  • Lijuan Zhai,
  • Yuanyu Gao,
  • Dong Tang,
  • Xueqin Ma,
  • Jinbo Ji,
  • Jian Sun,
  • Jingwen Ji,
  • Yuanbai Liu,
  • Rui Jiang,
  • Yangxiu Mu,
  • Lili He,
  • Haikang Yang and
  • Zhixiang Yang

Beilstein J. Org. Chem. 2021, 17, 711–718, doi:10.3762/bjoc.17.60

Graphical Abstract
  • remedies [4]. β-Lactams (BL) have served as the first line antibiotics since the introduction of penicillin. However, due to existence and continuous increase in β-lactamases [5], multidrug therapy is becoming the new modality of bacterial treatment against multiple-drug resistant (MDR) bacteria. Multidrug
  • passing through phase I and phase III clinical trials [6][25] in combination with different types of β-lactams. These multidrug combinations have shown promise for future antibiotic regime and drug development based on non-β-lactam inhibitors. Nonetheless, a partial loss of activity has been reported in
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2021

α,γ-Dioxygenated amides via tandem Brook rearrangement/radical oxygenation reactions and their application to syntheses of γ-lactams

  • Mikhail K. Klychnikov,
  • Radek Pohl,
  • Ivana Císařová and
  • Ullrich Jahn

Beilstein J. Org. Chem. 2021, 17, 688–704, doi:10.3762/bjoc.17.58

Graphical Abstract
  • , 12843 Prague 2, Czech Republic 10.3762/bjoc.17.58 Abstract Pyrrolidones are common heterocyclic fragments in various biologically active compounds. Here, a two-step radical-based approach to γ-lactams bearing three to four stereocenters starting from epoxides, N-allylic silylacetamides and TEMPO is
  • reactions providing functionalized pyrrolidones in high yields as diastereomeric mixtures. They converge to 3,4-trans-γ-lactams by base-mediated equilibration, which can be easily further diversified. Stereochemical models for both reaction types were developed. Keywords: Brook rearrangement; cyclization
  • ; electron transfer; γ-lactams; tandem reactions; Introduction Nitrogen-containing heterocycles are widely distributed in biologically active compounds [1][2][3][4]. Saturated nitrogen heterocycles such as pyrrolidines [5][6][7][8][9], piperidines, pyrrolizidines or indolizidines [10][11][12][13][14][15][16
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2021

Amino- and polyaminophthalazin-1(2H)-ones: synthesis, coordination properties, and biological activity

  • Zbigniew Malinowski,
  • Emilia Fornal,
  • Agata Sumara,
  • Renata Kontek,
  • Karol Bukowski,
  • Beata Pasternak,
  • Dariusz Sroczyński,
  • Joachim Kusz,
  • Magdalena Małecka and
  • Monika Nowak

Beilstein J. Org. Chem. 2021, 17, 558–568, doi:10.3762/bjoc.17.50

Graphical Abstract
  • selectively alkylated on the nitrogen atom [30][36]. For our purposes, the simple alkyl halides (MeI, iPrI), and 2-chloro-N,N-dimethylethylamine hydrochloride and 4-(2-chloroethyl)morpholine hydrochloride, were chosen as the alkylating agents. Thus, the desired N-methyl and N-isopropyl lactams 3a,b (3a R1
  • = Me, 85%; 3b R1 = iPr, 84%) were obtained by the direct alkylation of bromophthalazinone 2 with methyl or isopropyl iodide in the presence of K2CO3 in dry acetone as the solvent (conventional heating). In the similar way also the 2-aminoethyl lactams 3c (R1 = CH2CH2NMe2) and 3d (R1 = CH2CH2(morpholin
  • 2-chloro-N,N-dimethylethylamine and 4-(2-chloroethyl)morpholine and further palladium-catalyzed amination of lactams 3 with aliphatic, aromatic, benzylic, cyclic amines and polyamines. Furthermore, we have demonstrated that some of the phthalazinone derivatives act as ligands and form stable
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2021

Direct synthesis of anomeric tetrazolyl iminosugars from sugar-derived lactams

  • Michał M. Więcław and
  • Bartłomiej Furman

Beilstein J. Org. Chem. 2021, 17, 115–123, doi:10.3762/bjoc.17.12

Graphical Abstract
  • employment of these methods for modification of lactams is a challenge in its own right – there are hardly any examples of such transformations available in the literature [23]. Our group was the first to surmount this challenge by means of Schwartz’s reagent-mediated reductive functionalization. Since then
  • , we have performed a number of different functionalizations of such cyclic systems with various complexity, and with a particular focus on the modification of sugar-derived lactams. As summarized in Scheme 1, this includes simple nucleophile addition to in situ-generated imines [23], the consecutive
  • have, however, only reported one example of lactam functionalization which only proceeded with moderate efficiency (1-tert-butylazepan-2-one, 41% yield of the desired product). Unfortunately, this approach cannot be utilized for the functionalization of secondary amides, like sugar-derived lactams, due
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2021

Bifurcated synthesis of methylene-lactone- and methylene-lactam-fused spirolactams via electrophilic amide allylation of γ-phenylthio-functionalized γ-lactams

  • Tetsuya Sengoku,
  • Koki Makino,
  • Ayumi Iijima,
  • Toshiyasu Inuzuka and
  • Hidemi Yoda

Beilstein J. Org. Chem. 2020, 16, 2769–2775, doi:10.3762/bjoc.16.227

Graphical Abstract
  • 501-1193, Japan 10.3762/bjoc.16.227 Abstract New synthetic methods for spirolactams bearing an α-methylene-γ-butyrolactone or its analogous methylene-lactam have been developed. The allylation of γ-phenylthio-functionalized γ-lactams with 2-(acetoxy)methyl acrylamides was accomplished by using 2.5
  • methylene-lactams (C) through zinc-catalyzed addition to N-carbonyl imides [13][14][16]. Meanwhile, we also developed an umpolung electrophilic allylation of 3-heterosubstituted oxindole D for the synthesis of lactam analog of A (Scheme 1c) [17]. The oxindole D readily reacted with 2-(acetoxy)methyl
  • conditions, 3i–o were predominantly formed in 92–99% yields. Thus, we could obtain a wide variety of 3-phenylthio lactams bearing an amide functionality by electrophilic allylation with 1. Having completed the installation of an acrylamide side chain into 3-phenylthio lactams, we subsequently proceeded to
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2020

Synthesis of novel fluorinated building blocks via halofluorination and related reactions

  • Attila Márió Remete,
  • Tamás T. Novák,
  • Melinda Nonn,
  • Matti Haukka,
  • Ferenc Fülöp and
  • Loránd Kiss

Beilstein J. Org. Chem. 2020, 16, 2562–2575, doi:10.3762/bjoc.16.208

Graphical Abstract
  • cyclic olefins, such as diesters, imides, and lactams with varied functionalization patterns and different structural architectures is described. The synthetic methodologies were based on electrophilic activation through halonium ions of the ring olefin bonds, followed by nucleophilic fluorination with
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • photocycloaddition of coumarins 202 (Scheme 31) [89]. The proposed mechanism for this reaction is similar to that proposed by Bach and Krische, proceeding via a key hydrogen bonding complex 203. Interestingly, this catalyst allowed for reactivity with lactones, whereas Bach’s catalysts are limited to lactams. Yoon
  • the substrate within a hydrogen bonding complex 207 that provides the desired products 208 in excellent yields and good enantioselectivities (13 examples, up to 96:4 er) and a quantum yield of 0.31 [91]. As with Bach’s catalysts, the scope is limited to lactams. Yoon et al. then applied a similar
PDF
Album
Review
Published 29 Sep 2020

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • -lactams [6], quinolin-5-ones [7], spirobisglutarimides [8], indolizines [9], and spiro carbocyclic frameworks [10]. However, most of the reported synthetic transformations utilize either allylic hydroxy-protected or allyl halide-substituted MBH adducts [11][12][13][14][15][16][17][18][19][20][21][22][23
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

One-step route to tricyclic fused 1,2,3,4-tetrahydroisoquinoline systems via the Castagnoli–Cushman protocol

  • Aleksandar Pashev,
  • Nikola Burdzhiev and
  • Elena Stanoeva

Beilstein J. Org. Chem. 2020, 16, 1456–1464, doi:10.3762/bjoc.16.121

Graphical Abstract
  • expected fused δ-lactams [26]. The purpose of the present investigation was to explore the much less studied reaction between monocyclic anhydrides 5–8 and cyclic imines (such as 6,7-dimethoxy-3,4-dihydroisoquinoline (18) and its 1-alkyl derivatives 19 and 20) as a potential one-step route towards
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
  • tetracyclic fused benzoxazolethietane derivative 354 in 20% yield [83] (Scheme 69). In 1991, Sakomto and co-workers started on the synthesis of highly rigid thietane-fused β-lactams. They prepared various derivatives 356 in high yields via the photochemical cycloaddition reactions of N-(α,β-disubstituted
  • ] cycloaddition. The reaction afforded the product in 70% yield with 40% ee at −45 °C and in 75% yield with 10% ee at 0 °C, respectively [97] (Scheme 71). One year later, they studied the diastereoselective synthesis of highly rigid thietane-fused β-lactams 358–361 from a chiral monothioimide 357. The
  • performed the absolute asymmetric synthesis of highly rigid thietane-fused β-lactams 356 from achiral monothioimides 355 using a chiral crystal environment through a topochemically controlled intramolecular photochemical [2 + 2] cycloaddition in a benzene solution. Only the 2-methylacrylamide derivative
PDF
Album
Review
Published 22 Jun 2020

Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents

  • Yafei Guo and
  • Syuzanna R. Harutyunyan

Beilstein J. Org. Chem. 2020, 16, 1006–1021, doi:10.3762/bjoc.16.90

Graphical Abstract
  • the lactams 7, leading to the corresponding products with up to 81% yield and an enantiomeric ratio of up to 82:18 (Scheme 4B). Oxygen-containing heterocyclic compounds are ubiquitous in natural products and medicines, with many of them being chiral. Copper-catalysed ACA reactions of organometallics
  • enantioselectivity (Scheme 6B). The copper-catalysed ACA of organometallics has also been applied to lactams, which are useful building blocks for synthetic chemistry. In 2004, Pineschi and co-workers successfully introduced the methodology of copper-catalysed ACAs of organoaluminium and organozinc reagents to
  • lactams (Scheme 7A) [30]. They found that with a phenylcarbamate protecting group on the nitrogen atom, the addition of Et2Zn and Me3Al could be promoted by the L1/Cu catalytic system, leading to the corresponding alkylated products with 95% and 68% enantioselectivity, respectively. Furthermore, the
PDF
Album
Review
Published 14 May 2020

Bipyrrole boomerangs via Pd-mediated tandem cyclization–oxygenation. Controlling reaction selectivity and electronic properties

  • Liliia Moshniaha,
  • Marika Żyła-Karwowska,
  • Joanna Cybińska,
  • Piotr J. Chmielewski,
  • Ludovic Favereau and
  • Marcin Stępień

Beilstein J. Org. Chem. 2020, 16, 895–903, doi:10.3762/bjoc.16.81

Graphical Abstract
  • stoichiometric oxidant. The scope of such Pd(II)-induced couplings was further developed into tandem processes involving consecutive cyclization of substituents (dcTTEE) and oxygenation of pyrrolic α-positions to form lactams cNDA1O and cNMI1O. The mechanism of those transformations was subsequently explored
  • each produced a single broadened signal, indicating that the helix inversion occurs in the fast exchange regime. This apparently faster inversion in cNMI2H than in the cNMI2O and cNDA2O lactams correlates with the higher bond order of the α–α linkage in the latter two systems. The chirality of cNMI3H
  • bipyrroles are very efficient fluorophores (Table 2), noticeably more emissive than the lactam analogues and the other previously reported boomerangs [32]. Highest fluorescence quantum yields were observed in toluene (83 and 80%, respectively). For comparison, the Φfl values for the lactams cNMI2O and cNMI3O
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2020

Aldehydes as powerful initiators for photochemical transformations

  • Maria A. Theodoropoulou,
  • Nikolaos F. Nikitas and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2020, 16, 833–857, doi:10.3762/bjoc.16.76

Graphical Abstract
  • good yields of 145h–l (Scheme 32). Additionally, products derived from ureas (i.e., 146), N,N-dimethylaniline (i.e., 147), amides (i.e., 148), and lactams (i.e., 149a) were obtained. Moreover, for N-methylpyrrolidinone, α-arylation was achieved in a good yield and regioselectivity for the substitution
PDF
Album
Review
Published 23 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • , for the first time, a silyl transfer to lactams in both high chemical yields and high ees [60]. In this case, a comparatively higher (5 mol %) copper loading was necessary. Not only lactams (Scheme 25) but also acyclic, unsaturated amides could be efficiently silylated under these conditions
PDF
Album
Review
Published 15 Apr 2020

Preparation and in situ use of unstable N-alkyl α-diazo-γ-butyrolactams in RhII-catalyzed X–H insertion reactions

  • Maria Eremeyeva,
  • Daniil Zhukovsky,
  • Dmitry Dar’in and
  • Mikhail Krasavin

Beilstein J. Org. Chem. 2020, 16, 607–610, doi:10.3762/bjoc.16.55

Graphical Abstract
  • -ethoxalyl-γ-lactams 6a–c, prepared by oxalylation of the respective γ-lactams as decribed previously [1], underwent a rapid diazo transfer reaction via the conventional protocol [4][5] employing 4-nitrobenzenesulfonyl azide and DBU. A quick filtration through a plug of alumina (in lieu of silica gel, which
  • led to decomposition of the diazo compounds 4a–c), and addition of an alcohol, a thiol, or an aromatic amine along with a RhII catalyst resulted in a rapid insertion reaction and the isolation of the desired α-substituted γ-lactams 7a–o in modest yields (Scheme 1). It should be noted that, after some
  • substantially expanded, thereby making this approach more useful for potential medicinal chemistry exploration of these disubstituted γ-lactams. Previously reported uses of α-diazo-γ-butyrolactams 1 and 4. Generation and in situ RhII-catalyzed X–H insertion reactions of the diazo compounds 4a–c. Conditions
PDF
Album
Supp Info
Letter
Published 02 Apr 2020

Extension of the 5-alkynyluridine side chain via C–C-bond formation in modified organometallic nucleosides using the Nicholas reaction

  • Renata Kaczmarek,
  • Dariusz Korczyński,
  • James R. Green and
  • Roman Dembinski

Beilstein J. Org. Chem. 2020, 16, 1–8, doi:10.3762/bjoc.16.1

Graphical Abstract
  • intramolecular versions of the reaction are also highly successful [50][51]. Although the Nicholas reaction has been employed to functionalize biomolecules, including amino acids [52][53], β-lactams [54], steroids [55], and carbohydrates [56][57][58][59][60][61][62], we are unaware of any examples of nucleoside
PDF
Album
Supp Info
Letter
Published 02 Jan 2020

Chemical synthesis of tripeptide thioesters for the biotechnological incorporation into the myxobacterial secondary metabolite argyrin via mutasynthesis

  • David C. B. Siebert,
  • Roman Sommer,
  • Domen Pogorevc,
  • Michael Hoffmann,
  • Silke C. Wenzel,
  • Rolf Müller and
  • Alexander Titz

Beilstein J. Org. Chem. 2019, 15, 2922–2929, doi:10.3762/bjoc.15.286

Graphical Abstract
  • identified. In addition, the development of new β-lactamase inhibitors is ongoing and may restore the activity of known β-lactams against β-lactamase-producing strains [2]. Unfortunately, most of these antibiotics rely on known modes of action and do not target novel binding sites. To circumvent established
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2019

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • -158a, and 159a were further converted to the corresponding lactams 160a and 160b enabling efficient recovery of chiral auxiliaries (Scheme 51). Furthermore, the same group reported an identical method for the TiCl4-promoted addition of allyltrimethylsilane to N-acyliminium ions containing the same
  • 2007, Feroci disclosed an electrochemical strategy for the cis-stereoselective synthesis of chiral β-lactams 180 via a 4-exo-tet cyclization of bromo amides 178 with an acidic methylene group and bearing a chiral auxiliary [101]. The cyclization occurred via deprotonation of the acidic methylene group
PDF
Album
Review
Published 13 Nov 2019
Other Beilstein-Institut Open Science Activities