Search results

Search for "organometallic" in Full Text gives 327 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

  • Nedra Touj,
  • François Mazars,
  • Guillermo Zaragoza and
  • Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947–1956, doi:10.3762/bjoc.19.145

Graphical Abstract
  • just three decades (Figure 1) [2]. In particular, cyclic diaminocarbenes based on the imidazoline, benzimidazole, or imidazole ring system (A–C) have led to a myriad of applications in organometallic chemistry, homogeneous catalysis, and materials science, to name just a few [3][4][5]. Due to their
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2023

Active-metal template clipping synthesis of novel [2]rotaxanes

  • Cătălin C. Anghel,
  • Teodor A. Cucuiet,
  • Niculina D. Hădade and
  • Ion Grosu

Beilstein J. Org. Chem. 2023, 19, 1776–1784, doi:10.3762/bjoc.19.130

Graphical Abstract
  • Catalin C. Anghel Teodor A. Cucuiet Niculina D. Hadade Ion Grosu Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular Organic and Organometallic Chemistry Centre, 11 Arany Janos Str., RO-400028-Cluj-Napoca, Romania University of Bucharest, Faculty of Chemistry
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2023

Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks

  • Zhang Dongxu

Beilstein J. Org. Chem. 2023, 19, 1741–1754, doi:10.3762/bjoc.19.127

Graphical Abstract
  • =N motif within hydrazones gives them both electrophilic and nucleophilic character. In 2005, Brigaud et al. developed a highly stereoselective method for the synthesis of α-trifluoromethylamines with organometallic reagents to extend the asymmetric methodologies of trifluoroacetaldehyde hydrazones
  • building blocks [91] (Scheme 14). Inspired by previous accounts and this work [92][93], Hu et al. explored 1,2- nucleophilic addition reactions of trifluoromethylated acylhydrazones with organometallic reagents for the synthesis of trifluorinated homoallylic acylhydrazines [94][95][96][97][98
  • Brønsted acid-assisted Lewis base catalysis. Synthesis of CF3-pyrazoles and CF3-1,6-dihydropyridazines. Asymmetric reactions of trifluoromethylimines with organometallic reagents. Mannich-type reaction of trifluoroacetaldehyde hydrazones. Synthesis of trifluoromethylated hydrazonoyl halides. Early work of
PDF
Album
Review
Published 15 Nov 2023

Benzoimidazolium-derived dimeric and hydride n-dopants for organic electron-transport materials: impact of substitution on structures, electrochemistry, and reactivity

  • Swagat K. Mohapatra,
  • Khaled Al Kurdi,
  • Samik Jhulki,
  • Georgii Bogdanov,
  • John Bacsa,
  • Maxwell Conte,
  • Tatiana V. Timofeeva,
  • Seth R. Marder and
  • Stephen Barlow

Beilstein J. Org. Chem. 2023, 19, 1651–1663, doi:10.3762/bjoc.19.121

Graphical Abstract
  • strong dopants, reacting with semiconductors more rapidly and predictably than hydride donors such as the corresponding 1H species [8], cleanly only to give SC•– and the corresponding monomeric cations. However, 12 dopants offer the possibility of more planar dopant ions than the organometallic dimers
  • unit) are fairly bulky, whereas in the hydrides there is a large difference in bulk between the hydridic H-atom and theY-group and thus a strong preference for Y to occupy a pseudo-equatorial position. As with other 12 species [14] and related organic [35][37][38] and organometallic dimers [22][39][40
  • ). We have previously noted a similar lack of correlation between bond length and bond dissociation energy in comparing the structures of 1c2 (Y = Fc; R = R' = H) and 1e2 (Y = cyclohexyl; R = R' = H) [14], and in comparing those of different organometallic dimers [22][46]. As noted in our previous work
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • is oxygen tolerant and can be carried out in a milder environment [65][66]. Pan and co-workers recently further advanced the RAFT techniques by allowing them to be fueled by oxygen [67]. The mechanism of a RAFT polymerization is shown in Scheme 6 [68]. Organometallic-mediated radical polymerization
PDF
Album
Review
Published 18 Oct 2023

C–H bond functionalization: recent discoveries and future directions

  • Indranil Chatterjee

Beilstein J. Org. Chem. 2023, 19, 1568–1569, doi:10.3762/bjoc.19.114

Graphical Abstract
  • its combination with organometallic chemistry for site-selective C−H bond functionalization [3][4]. Recent years have witnessed many viable strategies for the synthesis of complex targets utilizing photoredox catalysis, electroorganic catalysis, Lewis acid catalysis, and transition-metal-free
PDF
Editorial
Published 17 Oct 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • caused by its structural features. NHCs constitute a well-established class of new ligands in organometallic chemistry. Although initially NHCs were regarded as pure σ-donor ligands, later experimental and theoretical studies established the presence of a significant back donation from the d-orbital of
  • ligands in organometallic chemistry. After the first synthesis of stable monomeric NHCs, spectroscopic studies promptly revealed their similarity with phosphines. Indeed, both these classes of ligands are σ-donor ligands with low π-backdonating character [16][17]. In the beginning, the NHCs were perceived
  • selective method for the synthesis of a wide range of organic compounds [55][56]. Organometallic reagents, such as organolithium, organomagnesium, and organozinc reagents are commonly used in conjugate addition reactions. 2.2.1 Reaction with Grignard reagents: Organomagnesium reagents, such as Grignard
PDF
Album
Review
Published 20 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • functionalization via the canonical organometallic steps of oxidative addition/reductive elimination was ruled out via catalytic reaction of the macrocyclic Groves-type porphyrin catalyst V, a species that is unable to accommodate the mutual cis-orientation of ligands for metal-centered reductive elimination. The
PDF
Album
Perspective
Published 15 Aug 2023

Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO2F2)

  • Xian-Lin Chen and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2023, 19, 901–908, doi:10.3762/bjoc.19.68

Graphical Abstract
  • ) carbon, which leads to side reactions of the alkyl intermediates [14][19][20]. Besides, most of the C(sp2)–C(sp3) reactions employ organic halides or organometallic reagents [21][22][23], which are not environmentally friendly. Recently, based on the activation effect of O-acyloximes on N–O bonds [24][25
PDF
Album
Supp Info
Letter
Published 22 Jun 2023

Asymmetric tandem conjugate addition and reaction with carbocations on acylimidazole Michael acceptors

  • Brigita Mudráková,
  • Renata Marcia de Figueiredo,
  • Jean-Marc Campagne and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 881–888, doi:10.3762/bjoc.19.65

Graphical Abstract
  • products [20]. A salient feature of conjugate additions of organometallic reagents is that they generate reactive metal enolates as primary products. These enolates can be used in a variety of subsequent transformations [21]. Chiral enolates generated by conjugate additions react with carbonyl compounds
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • including transition metals and rare earth metals has been described and some other organometallic systems also were shown to have catalytic reactivity. Adopting this catalytic reactivity of organometallics and also the special bidentate nature of phosphinoamide ligands, in 2021, Chen and group [58
  • bond of 105 provides a seven-membered rhodacyclic intermediate 106. The protonation at the Rh–C bond of intermediate 106 in the presence of RCOOH furnishes hydroarylation product 104. Nitrogen heterocyclic carbenes (NHCs) are of central importance in organometallic chemistry and in organic synthesis
PDF
Album
Review
Published 12 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • organic synthetic transformations. Chiral metal enolates obtained by asymmetric conjugate additions of organometallic reagents are structurally complex intermediates that can be employed in many transformations. In this review, we describe this burgeoning field that is reaching maturity after more than 25
  • years of development. The effort of our group to broaden possibilities to engage metal enolates in reactions with new electrophiles is described. The material is divided according to the organometallic reagent employed in the conjugate addition step, and thus to the particular metal enolate formed
  • stereogenic information, thus leading to chiral products. Enolate species are uniquely positioned for reactivity with a broad array of electrophiles and thus allowing quick and efficient construction of highly complex structures from readily available starting materials. Various polar organometallic reagents
PDF
Album
Review
Published 04 May 2023

Phenanthridine–pyrene conjugates as fluorescent probes for DNA/RNA and an inactive mutant of dipeptidyl peptidase enzyme

  • Josipa Matić,
  • Tana Tandarić,
  • Marijana Radić Stojković,
  • Filip Šupljika,
  • Zrinka Karačić,
  • Ana Tomašić Paić,
  • Lucija Horvat,
  • Robert Vianello and
  • Lidija-Marija Tumir

Beilstein J. Org. Chem. 2023, 19, 550–565, doi:10.3762/bjoc.19.40

Graphical Abstract
  • package [55], with the water solvent effects modeled through the implicit SMD solvation [56]. The choice of such computational setup was prompted by its success in reproducing various features of different organic [57][58], organometallic [59], and protein systems [60], being particularly accurate for
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • -stage transition metals have contributed immensely to synthetic organic and organometallic chemistry, increasing societal awareness in terms of sustainable developments and resource management has prompted chemists to explore the use of environmentally benign, inexpensive, and earth-abundant metals [18
PDF
Album
Review
Published 24 Apr 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • groups can act as stabilizing additives to on-cycle organometallic intermediates in cross-coupling procedures. Given that the quantity of free anionic leaving groups, released at each turnover cycle, increases upon completion of the coupling process, it means that the catalyst resting state strongly
PDF
Album
Perspective
Published 14 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • °C and 0 °C, temperatures at which these organometallic reagents are also reported to be quite stable. The zincated dithiins can also be prepared by transmetalation of the magnesiated dithiins at −30 °C, and these organozinc reagents can then be used in room temperature Pd-catalyzed cross-coupling
PDF
Album
Review
Published 02 Feb 2023

Preparation of an advanced intermediate for the synthesis of leustroducsins and phoslactomycins by heterocycloaddition

  • Anaïs Rousseau,
  • Guillaume Vincent and
  • Cyrille Kouklovsky

Beilstein J. Org. Chem. 2022, 18, 1385–1395, doi:10.3762/bjoc.18.143

Graphical Abstract
  • obtained when using equimolar amounts of both 19 and 11b (Table 1, entries 1 and 2). These disappointing results with alkyne 19 prompted us to investigate the coupling with an organometallic reagent derived from vinyl iodide 20. This reagent was already synthesized and coupled with acyclic ketones in
  • previous syntheses of leustroducsins or phoslactomycins [7][8][9][10][11][12][13][14][15][16][17]. Thus, treatment of 20 with n-butyllithium in THF gave the organometallic intermediate which was condensed onto ketone 11b (Scheme 8, Table 2). Since no product was obtained under these standard conditions, we
PDF
Album
Full Research Paper
Published 04 Oct 2022

Ferrocenoyl-adenines: substituent effects on regioselective acylation

  • Mateja Toma,
  • Gabrijel Zubčić,
  • Jasmina Lapić,
  • Senka Djaković,
  • Davor Šakić and
  • Valerije Vrček

Beilstein J. Org. Chem. 2022, 18, 1270–1277, doi:10.3762/bjoc.18.133

Graphical Abstract
  • the acylation of purines from a regioselective to a regiospecific mode. Keywords: DFT; ferrocene; nucleophilicity; purine; steric effect; Introduction Nucleosides in which the sugar part is replaced with an organometallic moiety have attracted remarkable interest [1][2][3]. One important class are
  • organometallic (metallocene) and heterocyclic (purine) parts. Specifically, adenine and its N6-derivatives, most of which are pharmaceutically attractive and/or biologically relevant [20][21][22], have been selected to study the mechanism underlying the synthesis of the ferrocene–nucleobase conjugates. Several
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

Enantioselective total synthesis of putative dihydrorosefuran, a monoterpene with an unique 2,5-dihydrofuran structure

  • Irene Torres-García,
  • Josefa L. López-Martínez,
  • Rocío López-Domene,
  • Manuel Muñoz-Dorado,
  • Ignacio Rodríguez-García and
  • Miriam Álvarez-Corral

Beilstein J. Org. Chem. 2022, 18, 1264–1269, doi:10.3762/bjoc.18.132

Graphical Abstract
  • 4 mediated by the organometallic half-sandwich complex [CpTiIIICl2] [11][12]. Following this retrosynthetic proposal, our route starts from ethyl 4-oxobutanoate (4) [13] which was prepared by ozonolysis of commercially available ethyl pent-4-enoate (Scheme 2). Coupling of the aldehyde 4 with 1
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • intermediates in the total synthesis of natural products utilizing their electrophilic keto group as reactive site. Suitable key reactions are, e.g., aldol additions, carbonyl ene reactions, Mannich reactions, and additions of organometallic reagents. The vicinal arrangement of carbonyl groups allows the
  • bearing an electrophilic keto group as reactive site. The vicinal arrangement of carbonyl groups allows the stabilization of reactive conformations by chelation or dipole control. Suitable key reactions are e.g., aldol additions, carbonyl ene reactions, Mannich reactions, and additions of organometallic
PDF
Album
Review
Published 15 Sep 2022

Polymer and small molecule mechanochemistry: closer than ever

  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1225–1235, doi:10.3762/bjoc.18.128

Graphical Abstract
  • molecules (but also inorganic precursors, organometallic complexes, enzymes, monomeric units, or even polymers) in bulk and to provide the energy required for the system to react (Figure 1b and Figure 1c) [7][8][9][10][11][12]. At times, the methodological differences between both approaches seem to have
  • , force-sensitive molecular mechanophores are now complemented by organometallic-based force-responsive mechanophores that are not purely organic molecular fragments [16][17][18]. In fact, the concept of a mechanophore is now broader and may include any force-reactive functional unit, whether it possesses
PDF
Album
Perspective
Published 14 Sep 2022

Scope of tetrazolo[1,5-a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof

  • Laura Holzhauer,
  • Chloé Liagre,
  • Olaf Fuhr,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2022, 18, 1088–1099, doi:10.3762/bjoc.18.111

Graphical Abstract
  • confirmed via single crystal X-ray crystallography. Several other byproducts, such as the bistriazolo product were isolated (see Supporting Information File 1). The obtained triazoloquinoxaline and TIQ products are promising ligands for complexation with different metals. The formation of organometallic
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2022

First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell

  • Daniele Rocco,
  • Ana A. Folgueiras-Amador,
  • Richard C. D. Brown and
  • Marta Feroci

Beilstein J. Org. Chem. 2022, 18, 979–990, doi:10.3762/bjoc.18.98

Graphical Abstract
  • as ligands in organometallic catalysts [9] and as versatile organocatalysts [10] in a very wide range of organic reactions such as classical benzoin condensation, transesterification, acylation, Knoevenagel reaction, Claisen condensation etc. The electrochemical generation of carbenes from ILs avoids
PDF
Album
Full Research Paper
Published 05 Aug 2022

Cathodic generation of reactive (phenylthio)difluoromethyl species and its reactions: mechanistic aspects and synthetic applications

  • Sadanobu Iwase,
  • Shinsuke Inagi and
  • Toshio Fuchigami

Beilstein J. Org. Chem. 2022, 18, 872–880, doi:10.3762/bjoc.18.88

Graphical Abstract
  • , these methods require various metal and organometallic reagents. On the other hand, electrochemical organic synthesis is a metal-free process and does not require any hazardous reagents and it produces less waste than conventional chemical syntheses. Therefore, electrochemical synthesis is desirable
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2022
Other Beilstein-Institut Open Science Activities