Search results

Search for "peroxide" in Full Text gives 229 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • successfully treated by artemisinin combination therapy (ACT). Artemisinin can be isolated from the Artemisia annua (sweet wormwood) plant. This sesquiterpene lactone bearing a peroxide is a prodrug of the biologically active dihydroartemisinin. In 2012, Zhu and Cook developed a gram-scale asymmetric total
PDF
Album
Review
Published 04 May 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • refluxed in the presence of a small amount of dilauroyl peroxide (DLP) as radical initiator. The eight-membered ring 176 was obtained in 60% yield as a single diastereomer [79]. 5 Pauson–Khand reaction Discovered in the seventies [80], the Pauson–Khand reaction has been widely used for the formation of
PDF
Album
Review
Published 03 Mar 2023

An efficient metal-free and catalyst-free C–S/C–O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides

  • Shubham Sharma,
  • Dharmender Singh,
  • Sunit Kumar,
  • Vaishali,
  • Rahul Jamra,
  • Naveen Banyal,
  • Deepika,
  • Chandi C. Malakar and
  • Virender Singh

Beilstein J. Org. Chem. 2023, 19, 231–244, doi:10.3762/bjoc.19.22

Graphical Abstract
  • , metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant. Keywords: C–S/O bond formation; metal-free; oxidative amidation
  • (entry 16, Table 2). From the above screening experiments, it was concluded that 10.0 equiv of hydrogen peroxide in THF at 70 °C proved to be the optimal conditions for the construction of the pyrazole-pyridine conjugate with an amide linkage (entry 16, Table 2). Having the optimized conditions in hand
  • available substituted 2-aminopyridines and hydrogen peroxide as an oxidant. The biological evaluation of the thioamide and amide conjugates is underway in our laboratory. Experimental General information All chemicals and reagents were purchased from Sigma-Aldrich, Acros, Avera Synthesis, Spectrochem Pvt
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • from ent-kaurane diterpenoids through carbocationic rearrangements [42]. Jungermatrobrunin A (89) [43] bears a highly oxidized scaffold with a unique bicyclo[3.2.1]octene backbone and an unprecedented peroxide bridge (Scheme 7). Natural product (−)-1α,6α-diacetoxyjungermannenone C (88) [43] was
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • /peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here. Keywords: CH-functionalization; free radicals; hypervalent iodine; N-oxyl radicals; redox-active molecules; Introduction Organocatalysis can be defined as catalysis by small organic molecules
  • , the acidic and basic sites of the catalyst are suggested to be involved in the activation of only hydrogen peroxide within a well-defined and deep chiral cavity. The enantioselective approach of sulfide to H2O2 is ensured by the sterically demanding structure of the catalyst. It should also be noted
  • radical-chain PINO/NHPI-catalyzed autoxidation proceeds with the selective formation of a benzylic hydroperoxide (Scheme 9), a product that frequently decomposes in the presence of transition metal ions or photoredox catalysts. It was shown that the peroxide is converted to the ketone on the TiO2 surface
PDF
Album
Perspective
Published 09 Dec 2022

Synthesis of (−)-halichonic acid and (−)-halichonic acid B

  • Keith P. Reber and
  • Emma L. Niner

Beilstein J. Org. Chem. 2022, 18, 1629–1635, doi:10.3762/bjoc.18.174

Graphical Abstract
  • organic co-solvent), and slow decomposition occurred under acidic conditions at elevated temperatures. Alternative methods to cleave the benzamide using sodium peroxide [11] or triethyloxonium tetrafluoroborate [12] were also unsuccessful, giving either no reaction or significant decomposition
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2022

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

  • Karen R. Winters and
  • Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471–1478, doi:10.3762/bjoc.18.154

Graphical Abstract
  • synthesized from 2-aminobiphenyl according to the literature [47]. Subsequent reaction with phosphorus trichloride and electrophilic aromatic substitution gave a chlorophosphine intermediate, which was directly reacted with (S)-1-phenylethylamine, then hydrogen peroxide. Phosphonamide diastereoisomers 17 were
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2022

On drug discovery against infectious diseases and academic medicinal chemistry contributions

  • Yves L. Janin

Beilstein J. Org. Chem. 2022, 18, 1355–1378, doi:10.3762/bjoc.18.141

Graphical Abstract
  • combination with piperaquine (Synriam), the analog artefenomel (42) is undergoing clinical trials, including in combination with DSM-265 (39) [215][216][217][218]. Of note is that prior to 1971, thinking of developing a peroxide-containing compound for a clinical use against malaria would have not been
  • the 2015 Nobel price. This also triggered extensive research aiming at improving the rather poor pharmacological properties of artemisinin (43) and led to many hemisynthetic derivatives [221]. Moreover, artificial peroxide-containing compounds were also investigated at least partly to address the
PDF
Album
Perspective
Published 29 Sep 2022

Polymer and small molecule mechanochemistry: closer than ever

  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1225–1235, doi:10.3762/bjoc.18.128

Graphical Abstract
  • BMPF mechanophore into glassy and rubbery polymeric networks such as poly(butyl methacrylate) and a poly(hexyl methacrylate) [28]. Upon treatment of the polymeric material 2 in a mixer mill (Figure 1b), the BMPF units underwent a mechanical homolytic fragmentation of the O−O peroxide bond, releasing
  • -methylphenyl-9-fluorenyl) peroxide (BMPF)-containing poly(butyl methacrylate) 2, in a mixer mill. Mechanochemical activation of dendronized polymer-based compound 4 by ultrasonication and ball milling in a mixer mill. Comparative mechanochemical dissociation of the central C–C bond in TASN derivatives 6 and 8
PDF
Album
Perspective
Published 14 Sep 2022

Electro-conversion of cumene into acetophenone using boron-doped diamond electrodes

  • Mana Kitano,
  • Tsuyoshi Saitoh,
  • Shigeru Nishiyama,
  • Yasuaki Einaga and
  • Takashi Yamamoto

Beilstein J. Org. Chem. 2022, 18, 1154–1158, doi:10.3762/bjoc.18.119

Graphical Abstract
  • hydroperoxide/dicumyl peroxide/phenol from cumene, acetophenone from ethylbenzene, and others. Generally, molecular oxygen has been utilized in the straightforward oxidation of aromatic alkyls. However, since molecular oxygen is highly stable, activation of the molecular oxygen itself is necessary, which
PDF
Album
Supp Info
Letter
Published 07 Sep 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • peroxide and sulfurization with sulfur, respectively (Scheme 16) [37][38]. Synthesis via formation of the C–C bond neighboring at the ring phosphorus atom In 1984, Collins and co-workers attempted the synthesis of benzo-γ-phosphonolactams 56a and 93 from (chloromethyl)(phenyl)-N-methyl-N
PDF
Album
Review
Published 22 Jul 2022

Synthesis of odorants in flow and their applications in perfumery

  • Merlin Kleoff,
  • Paul Kiler and
  • Philipp Heretsch

Beilstein J. Org. Chem. 2022, 18, 754–768, doi:10.3762/bjoc.18.76

Graphical Abstract
  • state of the decatungstate anion generates carbon-centered radical 48 which is trapped in a segmented flow with molecular oxygen provided by a mass flow controller. Peroxide 49 is formed as intermediate which further reacts to phthalide (50) in 71% yield. This method efficiently utilizes the advantages
  • flowers of orchids among with the structurally related and better known Ambrettolide [(Z)-7-hexadecen-16-olide], having a sweet odor with “great tenacity and fixative power” [9][48]. Notably, and already in 1970, Story and co-workers described that cyclic ketones can be reacted with hydrogen peroxide
  • safe two-step synthesis of 56 from cyclohexanone. In the first step, a solution of cyclohexanone in dodecane is mixed in a Q-piece with hydrogen peroxide, nitric acid, and formic acid and subsequently pumped at room temperature through a PTFE tube reactor with a residence time of 93 min. The resulting
PDF
Album
Review
Published 27 Jun 2022

Structural basis for endoperoxide-forming oxygenases

  • Takahiro Mori and
  • Ikuro Abe

Beilstein J. Org. Chem. 2022, 18, 707–721, doi:10.3762/bjoc.18.71

Graphical Abstract
  • endoperoxygenase NvfI. Keywords: biosynthesis; endoperoxide; enzyme; natural products; X-ray crystallography; Introduction Endoperoxide-containing compounds form a large group of natural products with cyclic peroxide structures [1][2][3][4][5]. These compounds are widely distributed in nature, and many
  • endoperoxide containing alkaloids, terpenoids, and polyketides have been isolated from plants, animals, bacteria, fungi, and other organisms (Figure 1) [6][7]. Because of the high reactivity of the cyclic peroxide O–O bond, these compounds exhibit various biological activities [1][2][3][4][5]. For example
  • ], which share ≈60% amino acid identity [33]. Both isoforms catalyze the incorporation of two oxygen atoms into arachidonic acid (AA) to form an endoperoxide between C9 and C11 and a peroxide at C15 to generate prostaglandin G2 (PGG2) (Scheme 1) [24][34]. Subsequently, the 15-hydroperoxide in PGG2 is
PDF
Album
Review
Published 21 Jun 2022

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • performed chemical reactions. Interesting examples are MagTrieveTM, which contains CrO2 and nickel peroxide (NiO2). Both were mixed with MagSilicaTM and used as fixed-bed materials (Scheme 11, case C) [75]. At this point, it is important to note that CrO2, despite its paramagnetic properties, does not heat
PDF
Album
Review
Published 20 Jun 2022

Rapid gas–liquid reaction in flow. Continuous synthesis and production of cyclohexene oxide

  • Kyoko Mandai,
  • Tetsuya Yamamoto,
  • Hiroki Mandai and
  • Aiichiro Nagaki

Beilstein J. Org. Chem. 2022, 18, 660–668, doi:10.3762/bjoc.18.67

Graphical Abstract
  • 1,2-dichloroethane (45 mL) was stirred vigorously with air bubbling at the reaction temperature for 30 min to initiate the peroxide formation. Then, a solution of cyclohexene (3.25 mmol) in 1,2-dichloroethane (5 mL) was added. The inner pressure was released through a thin needle on the top of the
PDF
Album
Supp Info
Letter
Published 13 Jun 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • •−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and hydroperoxyl radical (•OOH) (Figure 3) [35]. Additionally, the menadione semiquinone radical can participate in another redox cycle, such as, the Fenton reaction, also resulting in the production of hydroxyl and hydroperoxyl radicals (Figure 3) [39][40
  • menadione (10), as was demonstrated by Minisci and co-workers [66]. In this work, the oxidation of 17 with 60% aqueous hydrogen peroxide, using bromine and sulfuric acid as catalysts, provided menadione in 90% yield (Table 2, entry 1) [66]. According to the proposed mechanism, the first step involves the
  • different benzylamines (1:1:2.2) (Table 2, entry 7). The reaction was carried out in tert-amyl alcohol (TAA), which led to product 10 in 55% yield and 99% conversion of 17 [55]. In addition to hydrogen peroxide, other oxidizing agents can be used in the synthesis of menadione (10) from 17 and include
PDF
Album
Review
Published 11 Apr 2022

Recent advances and perspectives in ruthenium-catalyzed cyanation reactions

  • Thaipparambil Aneeja,
  • Cheriya Mukkolakkal Abdulla Afsina,
  • Padinjare Veetil Saranya and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 37–52, doi:10.3762/bjoc.18.4

Graphical Abstract
  • the cyanation reaction. This strategy utilized eco-friendly hydrogen peroxide and molecular oxygen as the oxidant system. This method was found highly favorable to tertiary amines with electron-donating substituents. The first report on an MCM-41-immobilized N-alkylethylenediamine Ru(III) complex (MCM
  • to furnish the desired products in good yields. In 2008, they described the scope and mechanism of the oxidative cyanation of tertiary amines using H2O2 and O2 [34]. They pointed out the fact that the hydrogen peroxide system was found to be more efficient in catalyzing the cyanation reaction of
  • cyclic amines than the aerobic oxidation system. The catalytic cycle for the hydrogen peroxide system involves the formation of the oxoruthenium species (A) and the low-valent ruthenium species (B), whereas the aerobic oxidation system includes C–H activation and a subsequent reaction with molecular
PDF
Album
Review
Published 04 Jan 2022

Efficient N-arylation of 4-chloroquinazolines en route to novel 4-anilinoquinazolines as potential anticancer agents

  • Rodolfo H. V. Nishimura,
  • Thiago dos Santos,
  • Valter E. Murie,
  • Luciana C. Furtado,
  • Leticia V. Costa-Lotufo and
  • Giuliano C. Clososki

Beilstein J. Org. Chem. 2021, 17, 2968–2975, doi:10.3762/bjoc.17.206

Graphical Abstract
  • . While anthranilamide (5) bromination with N-bromosuccinimide in acetonitrile at room temperature [29] furnished 2-amino-5-bromobenzamide (6a) in 78% yield, iodination of 5 with iodine in the presence of hydrogen peroxide in water [30] at 50 °C provided 2-amino-5-iodobenzamide (6b) in 89% yield. After
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2021

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • isotope studies revealed the cleavage of the C(sp3)–H bond may be involved in the rate-determining step of this transformation. Mechanistically, prototypical homolysis of the peroxide in the presence of the Fe(II) catalyst will generate the alkyl radical 78 formed via hydrogen abstraction. The
  • synthesis of 3‐silylspiro[4,5]trienones 93 in good yield (Scheme 17) [95]. Compared to previously reported inter-/intramolecular CDC cascades, the authors were able to capture the post-cyclization aryl radical with the peroxide initiator rather than simply terminating the reaction with protonation. In terms
  • of the scope of the reaction, substrates bearing an electron-rich functionality were less reactive than substrates with electron-deficient groups. Isotopic labeling revealed the oxygen functionality installed came from the peroxide initiator rather than the water present, suggesting the water plays
PDF
Album
Review
Published 07 Dec 2021

Highly stereocontrolled total synthesis of racemic codonopsinol B through isoxazolidine-4,5-diol vinylation

  • Lukáš Ďurina,
  • Anna Ďurinová,
  • František Trejtnar,
  • Ľuboš Janotka,
  • Lucia Messingerová,
  • Jana Doháňošová,
  • Ján Moncol and
  • Róbert Fischer

Beilstein J. Org. Chem. 2021, 17, 2781–2786, doi:10.3762/bjoc.17.188

Graphical Abstract
  • hydrogen peroxide catalyzed by phosphotungstic heteropoly acid. Each of the key reactions proceeded with an excellent diastereoselectivity (dr > 95:5). (±)-Codonopsinol B was prepared in 10 steps with overall 8.4% yield. The antiproliferative effect of (±)-codonopsinol B and its N-nor-methyl analogue was
  •  1, page S25). Although the syn selectivity was further improved (80:20) by using the in situ-generated trifluoroperoxyacetic acid [28], the reaction suffered from formation of a high level of impurities. Gratifyingly, this issue has been overcome by the use of hydrogen peroxide in the presence of
  • formation. Since the aqueous tungstic acid-catalyzed hydrogen peroxide epoxidations of monosubstituted allylic alcohols usually proceed in anti (erythro) stereoselective fashion [32], we propose that the high syn selectivity can be attributed to the presence of the unprotected hydroxy group in the
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2668–2679, doi:10.3762/bjoc.17.181

Graphical Abstract
  • nitrate (CAN) [41], 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO)/CuCl [51], K2S2O8 [36], dimethyl sulfoxide (DMSO)/O2 [52], PhI(OAc)2/benzoyl peroxide (BPO) [47], Dess-Martin periodinane, N-bromosuccinimide (NBS), N-hydroxyphthalimide (NHPI)/Co(OAc)2/O2 [53], H2O2/tetrabutylammonium iodide (TBAI) [43], CBr4
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2021

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • electrochemical microreactors can be a viable tool for developing efficient transition-metal electrocatalysis. C(sp3)–H alkynylation of tetrahydroisoquinolines. L* = chiral ligand. TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl. DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. BPO = benzoyl peroxide. Substrate
PDF
Album
Supp Info
Letter
Published 28 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • photolysis of DTBP producing an alkyl radical, which reacted with nitrogen-containing compounds to give the target products 63. The catalytic cycle involves a photoinduced copperII peroxide system with an in situ-generated CuII–N complex as the key catalytic species. In 2020, Anandhan’s group [98] developed
PDF
Album
Review
Published 12 Oct 2021

Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds

  • Sumana Mandal,
  • Raju D. Chaudhari and
  • Goutam Biswas

Beilstein J. Org. Chem. 2021, 17, 2348–2376, doi:10.3762/bjoc.17.153

Graphical Abstract
  • cyclization of alkenyl α-aminophosphonates. Cyclization of 4-cycloocten-1-ol with Hg(OAc)2 forming fused bicyclic products. trans-Amino alcohol formation through Hg(II)-salt-mediated cyclization. Hg(OAc)2-mediated 2-aza- or 2-oxa-bicyclic ring formations. Hg(II)-salt-induced cyclic peroxide formation. Hg(OAc
PDF
Album
Review
Published 09 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • often requires relatively high catalyst loadings, directing groups, high reaction temperatures (100–160 °C), stoichiometric additives, or oxidants such as peroxide or silver salts that can be undesirable for large scale synthesis. Recently, photoredox dual catalysis has witnessed significant
  • -amino C(sp3)–H bonds using di-tert-butyl peroxide (DTBP) or dicumyl peroxide (DCP) as the methyl source under mild conditions [93]. Based on the substrate structure and peroxide choice, the authors developed four sets of reaction conditions (Scheme 29) [93]. In these reaction conditions, photocatalyst
PDF
Album
Review
Published 31 Aug 2021
Other Beilstein-Institut Open Science Activities