Search results

Search for "reaction optimization" in Full Text gives 77 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of meso-pyrrole-substituted corroles by condensation of 1,9-diformyldipyrromethanes with pyrrole

  • Baris Temelli and
  • Pinar Kapci

Beilstein J. Org. Chem. 2022, 18, 1403–1409, doi:10.3762/bjoc.18.145

Graphical Abstract
  • mono- and dipyrrole-substituted compounds. The reaction of 5-phenyl-1,9-diformyldipyrromethane (1a) with pyrrole. [2 + 2] Mac Donald type condensation reaction. Optimization of reaction conditions.a Synthesis of pyrrole-substituted corroles.a Supporting Information Supporting Information File 274
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2022

Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor

  • Wei-Hsin Hsu,
  • Susanne Reischauer,
  • Peter H. Seeberger,
  • Bartholomäus Pieber and
  • Dario Cambié

Beilstein J. Org. Chem. 2022, 18, 1123–1130, doi:10.3762/bjoc.18.115

Graphical Abstract
  • point for applications in large-scale synthesis or automated reaction optimization. Based on literature precedents on catalyst leaching in packed-bed reactors [37][38], we assumed that the decreased activity could be linked to nickel leaching. Based on ICP results on the reactor outlet collected in the
  • )-proline. Optimization of temperature and light intensity for the coupling of 4-iodobenzotrifluoride and sodium p-toluenesulfinate. Comparison of different reactors. Supporting Information Supporting Information File 104: Details of packed-bed assembly, experimental procedures, reaction optimization and
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2022

Electrogenerated base-promoted cyclopropanation using alkyl 2-chloroacetates

  • Kouichi Matsumoto,
  • Yuta Hayashi,
  • Kengo Hamasaki,
  • Mizuki Matsuse,
  • Hiyono Suzuki,
  • Keiji Nishiwaki and
  • Norihito Kawashita

Beilstein J. Org. Chem. 2022, 18, 1116–1122, doi:10.3762/bjoc.18.114

Graphical Abstract
  • cyclopropanetricarboxylates. Previous reports (reactions 1–3) and this work (reaction 4). Plausible reaction mechanism. EGB = electrogenerated base. Reaction optimization. Effect of electricity around 1 F/mol and type of electrochemical cell. Scope and limitations. Scale-up experiments. Supporting Information Supporting
PDF
Album
Supp Info
Letter
Published 29 Aug 2022

Electrochemical vicinal oxyazidation of α-arylvinyl acetates

  • Yi-Lun Li,
  • Zhaojiang Shi,
  • Tao Shen and
  • Ke-Yin Ye

Beilstein J. Org. Chem. 2022, 18, 1026–1031, doi:10.3762/bjoc.18.103

Graphical Abstract
  • (Ecell = 2.3 V, carbon cloth anode, and Pt cathode) of 1-phenylvinyl acetate (1) with azidotrimethylsilane was performed and the desired α-azidoketone (2) was obtained in 68% yield (Table 1, entry 1, for details of the reaction optimization see Supporting Information File 1). The cyclic voltammetry
PDF
Album
Supp Info
Letter
Published 12 Aug 2022

On Reuben G. Jones synthesis of 2-hydroxypyrazines

  • Pierre Legrand and
  • Yves L. Janin

Beilstein J. Org. Chem. 2022, 18, 935–943, doi:10.3762/bjoc.18.93

Graphical Abstract
  • alanine amide (2{1})) was secured. As listed in Table 2, some of the results of the reaction optimization studies using compounds 1{1} and 2{2} followed the trends reported in Table 1. But for entries 16 and 17 in Table 2, a slow addition of the base, at −78 °C, was always used and we also checked that an
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2022

Copper-catalyzed multicomponent reactions for the efficient synthesis of diverse spirotetrahydrocarbazoles

  • Shao-Cong Zhan,
  • Ren-Jie Fang,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2022, 18, 796–808, doi:10.3762/bjoc.18.80

Graphical Abstract
  • . Synthesis of 3,3'-(arylmethylene)bis(2-methyl-1H-indole). Reaction conditions: 2-methylindole (1.0 mmol), aromatic aldehyde (0.5 mmol), CuSO4 (0.1 mmol), toluene (6.0 mL), 110 °C, 3 h. Isolated yields are shown. Proposed reaction mechanism for the multicomponent reaction. Optimization of reaction
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Complementarity of solution and solid state mechanochemical reaction conditions demonstrated by 1,2-debromination of tricyclic imides

  • Petar Štrbac and
  • Davor Margetić

Beilstein J. Org. Chem. 2022, 18, 746–753, doi:10.3762/bjoc.18.75

Graphical Abstract
  • envisaged that the absence of solvent under mechanochemical conditions should prevent the formation of products from tetrahydrofuran and therefore allow cycloaddition to take place. Results and Discussion Reaction optimization Anthracene addition to dibromide 10 (Scheme 1) was used as the model reaction
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2022

Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions

  • Hao Guo,
  • Yu-Fei Ao,
  • De-Xian Wang and
  • Qi-Qiang Wang

Beilstein J. Org. Chem. 2022, 18, 486–496, doi:10.3762/bjoc.18.51

Graphical Abstract
  • and activation ability. Catalytic reaction optimization The synthesized macrocycles were then applied as catalysts in the decarboxylative addition of malonic acid half thioesters (MAHTs) to isatin-derived ketimines [48]. The reaction between ketimine 6a and MAHT 7a was initially performed in THF at
PDF
Album
Supp Info
Full Research Paper
Published 02 May 2022

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • the direct synthesis of 9,10-dicyanoanthracenes from 9,10-anthraquinones [49]. Despite the challenges presented by the different substrates, a long study of reaction optimization allowed the authors to synthesize 9,10-dicyanoanthracene (70a), 2,6-dibromo- (70b), and 2,6-diiodo-9,10-dicyanoanthracene
PDF
Album
Review
Published 10 Aug 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • with various heterocyclic C–H acids, resulting in the synthesis of coumarin/quinolinone fused dihydropyranones and dihydropyridinones 47. The reaction optimization and the scope and limitations study were carried out using an achiral NHC, but the enantioselective version was also performed using 4
PDF
Album
Review
Published 03 Aug 2021

Copper-mediated oxidative C−H/N−H activations with alkynes by removable hydrazides

  • Feng Xiong,
  • Bo Li,
  • Chenrui Yang,
  • Liang Zou,
  • Wenbo Ma,
  • Linghui Gu,
  • Ruhuai Mei and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2021, 17, 1591–1599, doi:10.3762/bjoc.17.113

Graphical Abstract
  • alkyne 2a and a stoichiometric amount of Cu(OAc)2 in DMSO (Table 1, entries 1–3). Reaction optimization revealed that the most appropriate temperature was 90 °C (Table 1, entries 3–6). An evaluation of bases showed that Na2CO3 was optimal (Table 1, entries 7–11). The best result was obtained when Cu(OAc
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2021

Metal-free glycosylation with glycosyl fluorides in liquid SO2

  • Krista Gulbe,
  • Jevgeņija Lugiņina,
  • Edijs Jansons,
  • Artis Kinens and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 964–976, doi:10.3762/bjoc.17.78

Graphical Abstract
  • ; reaction optimization data; reactivity of other glycosyl donors; proposed structures of side-products; detailed description of 19F NMR studies; stability tests for various glycosyl donors. Supporting Information File 145: Copies of NMR spectra. Supporting Information File 146: DFT calculations. Funding
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2021

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • : phosphonium salt-catalysed triazolation of MBH adducts. Scope of the one-pot cascade reaction of the unprotected Morita–Baylis–Hillman adducts 3a–q. Comparative analysis of the sequential one-pot reaction. Optimization of the triazolation of the MBH adduct 1a. Optimization of the reaction conditions for 3
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

Photocatalytic trifluoromethoxylation of arenes and heteroarenes in continuous-flow

  • Alexander V. Nyuchev,
  • Ting Wan,
  • Borja Cendón,
  • Carlo Sambiagio,
  • Job J. C. Struijs,
  • Michelle Ho,
  • Moisés Gulías,
  • Ying Wang and
  • Timothy Noël

Beilstein J. Org. Chem. 2020, 16, 1305–1312, doi:10.3762/bjoc.16.111

Graphical Abstract
  • isomer is marked with a star. 19F NMR yields are reported. a CH3CN/CH2Cl2 3:2, 0.08 M; b CH3CN/CH2Cl2 1:1, 0.05 M; c CH3CN/CH2Cl2 5:3, 0.05 M; d CH3CN/CH2Cl2 3:2, 0.02 M; e CH3CN/CH2Cl2 5:4, 0.057 M. Reaction optimization under flow conditions. Influence of bases on the photoredox trifluoromethoxylation
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
PDF
Album
Review
Published 01 Apr 2020

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • (Scheme 30) [118]. Reaction optimization has shown Cu(OAc)2 to be suitable for this transformation whereas other Lewis acids like CuI, Cu(OTf)2 and FeCl3 gave lower yields, whereas Zn(OAc)2 did not result in any product. The strategy has well tolerated different substituents on pyridine and benzylamine as
PDF
Album
Review
Published 19 Jul 2019

Synthesis of 9-O-arylated berberines via copper-catalyzed CAr–O coupling reactions

  • Qiaoqiao Teng,
  • Xinhui Zhu,
  • Qianqian Guo,
  • Weihua Jiang,
  • Jiang Liu and
  • Qi Meng

Beilstein J. Org. Chem. 2019, 15, 1575–1580, doi:10.3762/bjoc.15.161

Graphical Abstract
  • leading to the failure of direct BBRB cross coupling. 9-O-Aryl berberine scope via cross-coupling reaction. 9-O-Ph-linked berberine dimer through double cross-coupling reaction. Optimization of the reaction conditions.a Supporting Information Supporting Information File 138: Experimental details and
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Synthesis of 2H-furo[2,3-c]pyrazole ring systems through silver(I) ion-mediated ring-closure reaction

  • Vaida Milišiūnaitė,
  • Rūta Paulavičiūtė,
  • Eglė Arbačiauskienė,
  • Vytas Martynaitis,
  • Wolfgang Holzer and
  • Algirdas Šačkus

Beilstein J. Org. Chem. 2019, 15, 679–684, doi:10.3762/bjoc.15.62

Graphical Abstract
  • exceeded 15% (Table 1, entry 6). The presence of a base also plays a crucial role in the cyclization described herein, and the transformation of 3a to 4a did not occur in the presence of only the catalyst and without base (Table 1, entry 7). Finally, the reaction optimization experiments showed that the
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2019

Enantioselective phase-transfer catalyzed alkylation of 1-methyl-7-methoxy-2-tetralone: an effective route to dezocine

  • Ruipeng Li,
  • Zhenren Liu,
  • Liang Chen,
  • Jing Pan and
  • Weicheng Zhou

Beilstein J. Org. Chem. 2018, 14, 1421–1427, doi:10.3762/bjoc.14.119

Graphical Abstract
  • inferior to the cinchonidine derivatives (C7 and C11). After a suitable catalyst (C7) was identified, further reaction optimization was performed (Table 2). In general, dichloromethane (DCM) was the common solvent for the two-phase reaction, but to our surprise, when the reaction was run in DCM (entry 2 in
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2018

Selective carboxylation of reactive benzylic C–H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system

  • Toshifumi Dohi,
  • Shohei Ueda,
  • Kosuke Iwasaki,
  • Yusuke Tsunoda,
  • Koji Morimoto and
  • Yasuyuki Kita

Beilstein J. Org. Chem. 2018, 14, 1087–1094, doi:10.3762/bjoc.14.94

Graphical Abstract
  • conditions. Reaction optimization of benzylic C–H acetoxylation using PIDA. Substrate screening for benzylic C–H acetoxylation by the PIDA/NaBr system.a Supporting Information Supporting Information File 134: Starting materials and Copies of 1H and 13C NMR spectra of all products. Acknowledgements This
PDF
Album
Supp Info
Letter
Published 16 May 2018

Bromide-assisted chemoselective Heck reaction of 3-bromoindazoles under high-speed ball-milling conditions: synthesis of axitinib

  • Jingbo Yu,
  • Zikun Hong,
  • Xinjie Yang,
  • Yu Jiang,
  • Zhijiang Jiang and
  • Weike Su

Beilstein J. Org. Chem. 2018, 14, 786–795, doi:10.3762/bjoc.14.66

Graphical Abstract
  • = 6 mm, ФMB = 0.293), 500 rpm, 45 min. Optimisation of the reaction conditions for the olefination of 3-bromoindazoles.a Examination of the influence of the grinding auxiliary on the reaction outcomea. Supporting Information Supporting Information File 108: Reaction optimization studies, details of
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2018

Investigating radical cation chain processes in the electrocatalytic Diels–Alder reaction

  • Yasushi Imada,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 642–647, doi:10.3762/bjoc.14.51

Graphical Abstract
  • ). Optimization of the electrocatalytic Diels–Alder reaction. Optimization of the electrocatalytic Diels–Alder reaction. Supporting Information Supporting Information File 60: Additional figure, general remarks, synthesis and characterization data, including copies of 1H and 13C NMR spectra. Acknowledgements
PDF
Album
Supp Info
Letter
Published 16 Mar 2018

Continuous-flow retro-Diels–Alder reaction: an efficient method for the preparation of pyrimidinone derivatives

  • Imane Nekkaa,
  • Márta Palkó,
  • István M. Mándity and
  • Ferenc Fülöp

Beilstein J. Org. Chem. 2018, 14, 318–324, doi:10.3762/bjoc.14.20

Graphical Abstract
  • addition, they are present in several natural frameworks [42][43][44]. We wanted to exploit the benefits of flow processing for reaction optimization and synthesis and develop novel sustainable synthetic methodologies with possible useful applications for the pharmaceutical industry. Our results show that
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2018

Microfluidic radiosynthesis of [18F]FEMPT, a high affinity PET radiotracer for imaging serotonin receptors

  • Thomas Lee Collier,
  • Steven H. Liang,
  • J. John Mann,
  • Neil Vasdev and
  • J. S. Dileep Kumar

Beilstein J. Org. Chem. 2017, 13, 2922–2927, doi:10.3762/bjoc.13.285

Graphical Abstract
  • nM. Microfluidic chemistry Reaction optimization of radiofluorination methods vary depending on the microfluidic systems being used but we can typically optimize 18F-labeling reaction conditions in one or two days from a single batch of [18F]fluoride. This is significantly more efficient than
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2017

NMR reaction monitoring in flow synthesis

  • M. Victoria Gomez and
  • Antonio de la Hoz

Beilstein J. Org. Chem. 2017, 13, 285–300, doi:10.3762/bjoc.13.31

Graphical Abstract
  • reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and
  • possibilities of development and innovation. Further developments in microchip technology, microcoils (higher sensitivity, broadband and 2D NMR applications [52]) and improved sensitivity for benchtop NMR instruments, together with the development of new and improved software for product analysis and reaction
  • optimization, will extend and popularize the application of these methodologies. Graphical representation of (a) conventional flow cell with a saddle-shaped RF coil and (b) flow capillary with a solenoid coil. Possible geometries of NMR coils. The NMR pulse sequence used for NOESY with WET solvent suppression
PDF
Album
Review
Published 14 Feb 2017
Other Beilstein-Institut Open Science Activities