Search results

Search for "transition metals" in Full Text gives 215 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • (I) complexes are frequently used to prepare NHC complexes of late transition metals [37]. As mentioned earlier, Diez-González et al. prepared some NHC–Cu(I) complexes, such as 69 through transmetallation by reacting [(SIPr)AgCl] 68 with the corresponding copper salt at rt (Scheme 23). However
PDF
Album
Review
Published 20 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • overcome the shortcomings of the above coupling reactions, organic chemists have envisaged the construction of C–C bonds directly through C–H bond activation [5]. Fortunately, scientists have used various transition metals as catalysts to realize the activation of various types of C–H bonds, and have
  • . Route b: the α-C(sp3)–H bonds are activated by a combination of transition metals and radical initiators to give the alkyl radicals, which are coupled with other radical receptors to afford the target product. Cu-catalyzed reactions Copper (common oxidation states are +I, +II and +III) has a
  • properties of transition metals and Lewis acids [69][70][71][72]. These advantages make iron salts attractive catalysts or reagents in chemical transformations and are considered ideal materials for developing catalysts [73]. Fe-catalyzed CDC reactions have achieved remarkable achievements in recent years
PDF
Album
Review
Published 06 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • literature examples of nitrate oxidation of different transition metals, such as palladium. Control reactions further supported this proposal, including the inability of alternative Fe(III) salts (e.g., FeCl3) to form more than stoichiometric azide product in the absence of added nitrate. We believe this
PDF
Album
Perspective
Published 15 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • including transition metals and rare earth metals has been described and some other organometallic systems also were shown to have catalytic reactivity. Adopting this catalytic reactivity of organometallics and also the special bidentate nature of phosphinoamide ligands, in 2021, Chen and group [58
  • iridium catalysis was achieved by Shi [61] in 2010 through an unusual meta-selectivity for the first time (Scheme 11a). To achieve meta-selectivity, the group has screened various transition metals and revealed that a silyl-iridium complex promoted the addition of meta-pyridyl C–H bonds to aldehydes 50
PDF
Album
Review
Published 12 Jun 2023

Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions

  • Masahiro Hosoya,
  • Yusuke Saito and
  • Yousuke Horiuchi

Beilstein J. Org. Chem. 2023, 19, 752–763, doi:10.3762/bjoc.19.55

Graphical Abstract
  • high potential for further optimization. Aerobic oxidation using transition metals instead of TEMPO was also investigated. Pd(OAc)2 (Table 1, entry 6) [42] and Cu(OAc)2 (Table 1, entry 7) [43], and Ni(OH)2 (Table 1, entry 8) [44] left the starting material 1a. Pd(OAc)2 led to moderate conversion, but
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • all possess helpful and, to an extent, specific reactivity characteristics. Interesting boron and silicon enolates can be generated by asymmetric conjugate boration [16], or silylation [17]. From several potentially catalytically active transition metals, copper combines beneficial properties for both
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • sketched in red, with newly formed cyclic structures being highlighted. Review Earth-abundant metals Among the transition metal used in organic synthesis, the late transition metals like rhodium, palladium, and iridium have taken center stage when it comes to methodology development. Although these late
  • -stage transition metals have contributed immensely to synthetic organic and organometallic chemistry, increasing societal awareness in terms of sustainable developments and resource management has prompted chemists to explore the use of environmentally benign, inexpensive, and earth-abundant metals [18
  • transition metals, this reaction proceeded smoothly with a broad range of ester-, ketone-, and amide-stabilized phosphorus ylides. Oxabenzonorbornadienes bearing both EWG and EDG substituents worked well including bridgehead-substituted substrates which only experienced a slight reduction in yield. Similar
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • derivatives. Finally, the use of abundant non-noble transition metals [209][210][211] in such reactions combined or not with modern technologies (photocatalysis and electrocatalysis) is still underexplored and any advances will be of high importance especially from a sustainability point of view aiming at
PDF
Album
Review
Published 17 Apr 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • Dominic R. Willcox Stephen P. Thomas EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom 10.3762/bjoc.19.28 Abstract Catalysis is dominated by the use of rare and potentially toxic transition metals. The main group offers a potentially sustainable alternative
  • reactivity to be rendered catalytic, and exhibit catalysis outwith Lewis acid-type activation. These exchange reactions have allowed redox-neutral catalysis complementary to and beyond the redox catalysis of the transition metals. Boron, aluminium, gallium, and indium have all been demonstrated in catalytic
PDF
Album
Review
Published 21 Mar 2023

Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation

  • Julian Spils,
  • Thomas Wirth and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 27–32, doi:10.3762/bjoc.19.2

Graphical Abstract
  • -established reagents for synthetic chemists. They are portrayed as an alternative to otherwise hazardous transition metals. This is due to their great reactivity in electrophilic group transfers [1][2][3][4], photo- or organocatalysis [5][6][7][8][9][10][11][12][13][14][15], and their utility as building
PDF
Album
Supp Info
Letter
Published 03 Jan 2023

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • reported by Pitts and collaborators. This study achieves full removal of metal species after common homogenous catalytic reactions such as a Suzuki–Miyaura reaction, Sonogashira reaction or hydrogenation mediated by Wilkinson’s catalyst [84]. Other interesting examples to remove transition metals in
PDF
Album
Perspective
Published 16 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • fundamentally different mechanisms have been proposed for the oxidation of alcohols [96] (Scheme 12). When using transition metals such as Cu(I) as co-catalyst, both aminoxyl radicals and metal ions serve as one-electron oxidants in a joint two-electron oxidation. In this system, primary aliphatic alcohols can
PDF
Album
Perspective
Published 09 Dec 2022
Graphical Abstract
  • in both techniques and probably pressure-induced activation and shearing deformation of reactant particles are more efficient using the grinding. We next examined the chelating effect of the above salens 1 with different transition metals. A library of metal–salen complexes was synthesized as
PDF
Album
Supp Info
Letter
Published 10 Oct 2022

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • ]. However, there is no reported example of the synthesis of alkynyl imidazopyridinyl selenides. The Se–C bond-formation reaction using transition metals such as Pd, Ru, Ni, Fe, and Cu as catalysts is one of the most powerful synthetic tools for preparing organoselenium compounds [16][17][18]. Diselenides
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • (Scheme 24). Tang and co-workers described the synthesis of thiosemicarbazone 80 from menadione (10) through a condensation reaction with thiosemicarbazide (79), which was used as a ligand in the synthesis of metal complexes using different transition metals, in refluxing ethanol (Scheme 25) [125
PDF
Album
Review
Published 11 Apr 2022

A resorcin[4]arene hexameric capsule as a supramolecular catalyst in elimination and isomerization reactions

  • Tommaso Lorenzetto,
  • Fabrizio Fabris and
  • Alessandro Scarso

Beilstein J. Org. Chem. 2022, 18, 337–349, doi:10.3762/bjoc.18.38

Graphical Abstract
  • the cyclization of citronellal have been developed mostly based on transition metals, both as heterogeneous and homogeneous catalysts frequently under much harsher experimental conditions [48][49][50]. The same cyclization of citronellal was reported also by Raymond and collaborators in water using a
PDF
Album
Supp Info
Letter
Published 28 Mar 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • importance of this coupling reaction [7]. Later, Sonogashira-type reactions requiring only copper as catalyst alone [8] and with other transition metals [9][10][11][12] have been reported. Especially iron has attracted a great deal of attention owing to its low price, easy availability, abundant nature, and
  • exceptional versatility [13][14][15]. Therefore, the low cost first series transition metals such as iron and cobalt show higher significance than other transition metals. Naturally, Sonogashira cross-coupling reactions using cobalt or iron catalysts were reported as more cost-effective alternatives to the
  • organic transformations [16]. The development of improved procedures in which less expensive and more suitable catalysts are used has remained an elusive goal. In this respect, iron catalysts stand out as valuable alternatives to those transition metals used in Sonogashira coupling reactions [17]. With
PDF
Album
Review
Published 03 Mar 2022

Diametric calix[6]arene-based phosphine gold(I) cavitands

  • Gabriele Giovanardi,
  • Andrea Secchi,
  • Arturo Arduini and
  • Gianpiero Cera

Beilstein J. Org. Chem. 2022, 18, 190–196, doi:10.3762/bjoc.18.21

Graphical Abstract
  • , calix[4]- [9][10][11][12][13] and resorcin[4]arene [14][15][16][17] are the most exploited cavitands due to their inherent limited flexibility and already proved their ability to control the catalytic activity of late-transition metals and particularly gold(I) catalysts [18][19][20][21][22][23][24][25
PDF
Album
Supp Info
Letter
Published 10 Feb 2022

Earth-abundant 3d transition metals on the rise in catalysis

  • Nikolaos Kaplaneris and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2022, 18, 86–88, doi:10.3762/bjoc.18.8

Graphical Abstract
  • , Germany 10.3762/bjoc.18.8 Keywords: C–H activation; 3d transition metals; green chemistry; late-stage functionalization; sustainability; Transition metal catalysis has emerged as a transformative platform for the assembly of increasingly complex compounds, with enabling applications to natural product
  • these indisputable advances, this approach has, thus far, predominantly relied on precious, often toxic, 4d and 5d transition metals, most prominently palladium, rhodium and iridium. In sharp contrast, the use of less expensive and less toxic Earth-abundant 3d transition metals continues to be
  • underdeveloped. This lack of viable catalysis strategies involving 3d transition metals is largely due to a limited knowledge on the working mode of these metal catalysts, which often involve single-electron-transfer-based redox events. As a consequence, there is a strong demand for efficient and reliable
PDF
Editorial
Published 07 Jan 2022

Recent advances and perspectives in ruthenium-catalyzed cyanation reactions

  • Thaipparambil Aneeja,
  • Cheriya Mukkolakkal Abdulla Afsina,
  • Padinjare Veetil Saranya and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 37–52, doi:10.3762/bjoc.18.4

Graphical Abstract
  • demanded the need of an alternative method for the synthesis of nitriles. Nowadays transition-metal-catalyzed reactions have received tremendous interest. Various transition metals such as Fe [15], Co [16], Ni [17], Pd [18], Cu [19], Rh [20] etc. were well explored in cyanation owing to its cost-effective
PDF
Album
Review
Published 04 Jan 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • products and processes that reduce or eliminate the use and generation of hazardous substances, as well as increase the atom economy of the reaction [9]. Among the transition-metal (TM) catalysts often used, the late transition metals like rhodium [10][11][12][13][14], palladium [15][16][17][18][19
PDF
Album
Review
Published 07 Dec 2021

Me3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines

  • Krishna M. S. Adusumalli,
  • Lakshmi N. S. Konidena,
  • Hima B. Gandham,
  • Krishnaiah Kumari,
  • Krishna R. Valluru,
  • Satya K. R. Nidasanametla,
  • Venkateswara R. Battula and
  • Hari K. Namballa

Beilstein J. Org. Chem. 2021, 17, 2765–2772, doi:10.3762/bjoc.17.186

Graphical Abstract
  • , they are associated with few limitations including: utilization of metals, transition metals, and difficulties in accessing the starting materials, which provoke the attention of the synthetic community for the development of simple and efficient methodologies towards the construction of these
PDF
Album
Supp Info
Letter
Published 16 Nov 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • renewable energy and green chemistry for many years. Ruthenium and iridium, which can be used as photoredox catalysts, are expensive and scarce in nature. Thus, the further development of catalysts based on these transition metals is discouraged. Alternative photocatalysts based on copper complexes are
PDF
Album
Review
Published 12 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • derivatives [13][14][15][16]. Especially, the 3d transition metals, such as Cu, Co and Ni, have been exploited to convert C–H bonds to various functional groups, attributing to the cost-effective and less toxic properties, which render C–H transformations both economically desirable and environmentally benign
  • of this environmentally benign, oxidative coupling strategy to the synthesis of valuable ortho-amino ferrocene derivatives hasn’t been achieved [50], probably ascribing to several challenges. First, unprotected amines are sensitive and unendurable to several oxidants in the presence of transition
  • metals. Second, both amines and the resulting aminated products could coordinate with metal catalysts and cause the deactivation of catalysts. Besides, high reaction temperature could lead to a mixture of byproducts or the decomposition of the ferrocene products. Herein, we described a Cu-catalyzed
PDF
Album
Supp Info
Letter
Published 28 Sep 2021
Other Beilstein-Institut Open Science Activities