Search results

Search for "ylide" in Full Text gives 145 result(s) in Beilstein Journal of Organic Chemistry.

One-pot double annulations to confer diastereoselective spirooxindolepyrrolothiazoles

  • Juan Lu,
  • Bin Yao,
  • Desheng Zhan,
  • Zhuo Sun,
  • Yun Ji and
  • Xiaofeng Zhang

Beilstein J. Org. Chem. 2022, 18, 1607–1616, doi:10.3762/bjoc.18.171

Graphical Abstract
  • . Subsequent decarboxylation of thiazolooxazol-1-one I affords non-stabilized azomethine ylide (AY) for 1,3-dipolar cycloaddition with olefinic oxindole 4a to give spirooxindolepyrrolothiazoles 5 and 7. The endo-TS is more favorable than exo-TS for the 1,3-dipolar cycloaddition to afford the major and minor
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2022

Electrogenerated base-promoted cyclopropanation using alkyl 2-chloroacetates

  • Kouichi Matsumoto,
  • Yuta Hayashi,
  • Kengo Hamasaki,
  • Mizuki Matsuse,
  • Hiyono Suzuki,
  • Keiji Nishiwaki and
  • Norihito Kawashita

Beilstein J. Org. Chem. 2022, 18, 1116–1122, doi:10.3762/bjoc.18.114

Graphical Abstract
  • colleagues reported in 2000 that the reaction between a Michael acceptor such as diethyl fumarate and a sulfur-ylide, prepared from ethyl 2-diazoacetate and tetrahydro-2H-thiopyran in the presence of Cu(acac)2, yielded triethyl cyclopropane-1,2,3-tricarboxylate in 68% yield (Scheme 1, reaction 1) [10]. The
PDF
Album
Supp Info
Letter
Published 29 Aug 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • ) from the reaction of dimethyl 2-(methylamino)benzoylphosphonate (70) and trimethyl phosphite at 105 °C through an ylide intermediate D. The ylide D was generated via deoxygenation of benzoylphosphonate 70 with trimethyl phosphite to form a carbene intermediate B, and trimethyl phosphite nucleophilic
PDF
Album
Review
Published 22 Jul 2022

Synthesis of bis-spirocyclic derivatives of 3-azabicyclo[3.1.0]hexane via cyclopropene cycloadditions to the stable azomethine ylide derived from Ruhemann's purple

  • Alexander S. Filatov,
  • Olesya V. Khoroshilova,
  • Anna G. Larina,
  • Vitali M. Boitsov and
  • Alexander V. Stepakov

Beilstein J. Org. Chem. 2022, 18, 769–780, doi:10.3762/bjoc.18.77

Graphical Abstract
  • 1,3-dipolar cycloaddition (1,3-DC) reactions of cyclopropenes to the stable azomethine ylide – protonated form of Ruhemann's purple (PRP) has been developed. Both 3-substituted and 3,3-disubstituted cyclopropenes reacted with PRP, affording the corresponding bis-spirocyclic 3-azabicyclo[3.1.0]hexane
  • and cannot be isolated as individual compounds. At the same time, the reaction of ninhydrin and proline results in the formation of the stable azomethine ylide. This 1,3-dipole demonstrated high reactivity towards diverse cyclopropenes, including parent cyclopropene [22]. Note that the reactions of
  • reductive amination/cyclization of enantiopure cis-cyclopropane dicarbonyls [26]. The strategy based on azomethine ylide cycloadditions to cyclopropenes enables ready access to a wide range of spiro-fused 3-azabicyclo[3.1.0]hexanes (Scheme 1a). Inspired by our recent achievements, we have focused on
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2022

Regioselectivity of the SEAr-based cyclizations and SEAr-terminated annulations of 3,5-unsubstituted, 4-substituted indoles

  • Jonali Das and
  • Sajal Kumar Das

Beilstein J. Org. Chem. 2022, 18, 293–302, doi:10.3762/bjoc.18.33

Graphical Abstract
  • 2021, Deng et al. showcased an unprecedented iridium-catalyzed asymmetric [4 + 3] cycloaddition of racemic 4-indolyl allylic alcohols 22 with α-imino esters 23 as azomethine ylide precursors to afford azepino[3,4,5-cd]indoles 24 in good yields and with complete regioselectivity and generally excellent
  • tolerates a variety of substituents in both 22 and 23. From a mechanistic point of view, the reaction proceeds through a domino azomethine ylide formation/allylation/Pictet–Spengler reaction sequence. Recently, An and Xiao and co-workers disclosed high-yielding syntheses of a wide range of indole-3,4-fused
PDF
Album
Commentary
Published 08 Mar 2022

Synthesis and late stage modifications of Cyl derivatives

  • Phil Servatius and
  • Uli Kazmaier

Beilstein J. Org. Chem. 2022, 18, 174–181, doi:10.3762/bjoc.18.19

Graphical Abstract
  • ozonide formed during the reaction [57]. Consequently, no PPh3 or Me2S was required to obtain the crude aldehyde. Subsequent addition of a Wittig ylide gave access to a cyclopeptide with an α,β-unsaturated ester side chain as a (E/Z) mixture. Unfortunately, this compound contained triphenylphosphine oxide
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2022

The ethoxycarbonyl group as both activating and protective group in N-acyl-Pictet–Spengler reactions using methoxystyrenes. A short approach to racemic 1-benzyltetrahydroisoquinoline alkaloids

  • Marco Keller,
  • Karl Sauvageot-Witzku,
  • Franz Geisslinger,
  • Nicole Urban,
  • Michael Schaefer,
  • Karin Bartel and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2716–2725, doi:10.3762/bjoc.17.183

Graphical Abstract
  • ethyl chloroformate/Et3N, followed by Wittig olefination with an ylide generated from (methoxymethyl)triphenylphosphonium chloride and LDA to give the enol ethers as E/Z mixtures. N-Phenethyl carbamates were obtained from benzaldehydes via Henry reaction with nitromethane, followed by zinc dust
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2021

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • liberated using TBAF to give compound 27 in 97% yield over two steps. The alcohol group in 27 was then oxidized to the corresponding aldehyde under Swern conditions and subsequently subjected to a Wittig reaction with a two-carbon phosphonium ylide reagent. The desired α,β-unsaturated ester 28 was then
  • -promoted double bond migration. The cyclopropyl functionality in 46 can be assembled from the reaction of sulfur ylide and the α,β-unsaturated ketone 47, which in turn can be realized from the cross metathesis between commercially available ethyl vinyl ketone (48) and the C2-symmetrical diene-diol 49. The
  • anti-addition of the sulfoxonium ylide to 52. Hou highlighted that the good diastereoselectivity control for the sulfoxonium ylide addition to acyclic α,β-unsaturated substrates such as 52 observed in their work represented the first example in literature. Hereupon, deprotonation of 53 over LiHMDS
PDF
Album
Review
Published 14 Sep 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • was described by Sun et al. [46]. In this method, the catalyst (DHQ)2PYR 42 reacts with tert-butyl 2-bromoacetate, and then an ylide is formed by the base Cs2CO3. After a conjugated addition of this intermediate to the coumarin 43 followed by nucleophilic substitution, the corresponding cyclopropa[c
  • deprotonated by a base, affording an ammonium ylide/enolate. Meanwhile, the Re-face attack is favored after interaction of squaramide portion of the catalyst with coumarin. Then, a Michael addition followed by intramolecular cyclization affords the desired product 75, as shown in Scheme 23. An enantioselective
PDF
Album
Review
Published 03 Aug 2021

Cascade intramolecular Prins/Friedel–Crafts cyclization for the synthesis of 4-aryltetralin-2-ols and 5-aryltetrahydro-5H-benzo[7]annulen-7-ols

  • Jie Zheng,
  • Shuyu Meng and
  • Quanrui Wang

Beilstein J. Org. Chem. 2021, 17, 1481–1489, doi:10.3762/bjoc.17.104

Graphical Abstract
  • Scheme 3 consisting of the following steps: (i) Wittig reaction of 2-bromobenzaldehyde with methyltriphenylphosphonium iodide ylide, (ii) lithiation of the resultant o-bromostyrene with n-BuLi and reaction of the aryl lithium species with ethylene oxide, and (iii) oxidation of the resultant primary
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
  • plausible mechanism shown in Scheme 14 explains the formation of azomethine ylide B by condensation of isatin with amino acid followed by release of a molecule of CO2 via A. The imine B undergoes 1,3-dipolar cycloaddition with the dipolarophiles 39. The cyclization yields the desired product 40 of the three
  • yield from 69% to 84% over the conventional protocol as observed during the study. The explored mechanism in Scheme 16 indicates an in situ anti-azomethine ylide (A) generation (between isatin and primary amine) favored due to steric hindrance in syn-ylide. The crucial step determines the route via
  • ylide formation over the expected Strecker degradation. The azomethine ylide trapped by 3-alkenylindole undergoes 1,3-dipolar cycloaddition and led to the cycloadducts 44. 4 Pyrans Pyran is a six-membered heterocyclic, non-aromatic ring, consisting of five carbon atoms and one oxygen atom with two
PDF
Album
Review
Published 19 Apr 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • : PDFA is available from the reaction of triphenylphosphine with halodifluoroacetate salts such as BrCF2CO2K. It exists as a free-flowing white solid that is not sensitive to air or moisture [33]. Upon heating to 80 °C in N-methylpyrrolidone, the compound decarboxylates and acts as a source of the ylide
  • Ph3P+CF2−, which was used for the Wittig olefination of aldehydes and ketones. However, heating PDFA in nonpolar solvents (e.g., xylene at 90 °C) favors the dissociation of the ylide to release difluorocarbene which is able to effect the cyclopropanation of alkenes [34]. Trimethylsilyl
PDF
Album
Review
Published 26 Jan 2021

Syntheses of spliceostatins and thailanstatins: a review

  • William A. Donaldson

Beilstein J. Org. Chem. 2020, 16, 1991–2006, doi:10.3762/bjoc.16.166

Graphical Abstract
  • ketals. The protection of the C-4 hydroxy group, hydrolysis of the acetonide, and selective tosylation of the 1° alcohol were prerequisites for the generation of the C-5–C-6 bond. To this end, the reaction of 82 with the ylide generated from trimethylsulfonium iodide gave the allylic alcohol 83. The
PDF
Album
Review
Published 13 Aug 2020

Tuneable access to indole, indolone, and cinnoline derivatives from a common 1,4-diketone Michael acceptor

  • Dalel El-Marrouki,
  • Sabrina Touchet,
  • Abderrahmen Abdelli,
  • Hédi M’Rabet,
  • Mohamed Lotfi Efrit and
  • Philippe C. Gros

Beilstein J. Org. Chem. 2020, 16, 1722–1731, doi:10.3762/bjoc.16.144

Graphical Abstract
  • the target compounds required the prior preparation of a panel of variously substituted 1,4-diketones 5. The 1,4-diketones 5 have been prepared either by a Nef reaction [56] from the corresponding nitroenone 3 or a Wittig reaction [57] from 1,2-cyclohexanedione and the corresponding ylide 4 (Scheme 2
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2020

[3 + 2] Cycloaddition with photogenerated azomethine ylides in β-cyclodextrin

  • Margareta Sohora,
  • Leo Mandić and
  • Nikola Basarić

Beilstein J. Org. Chem. 2020, 16, 1296–1304, doi:10.3762/bjoc.16.110

Graphical Abstract
  • different reactions, [3 + 2] cycloadditions showed applicability in the synthesis of heterocyclic 5-ring compounds [3], as well as in the green synthesis of a number of natural products [4]. One of the useful synthons in [3 + 2] cycloadditions is azomethine ylide [5][6][7], also used in intramolecular
  • . Irradiation of such a complex leads to decarboxylation and formation of the reactive intermediate, azomethine ylide, within the supramolecular host. The subsequent [3 + 2] cycloaddition within the inclusion complex gives heterocyclic cycloadducts, even though it is conducted in aqueous solvent in which ylides
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2020

Ferrocenyl-substituted tetrahydrothiophenes via formal [3 + 2]-cycloaddition reactions of ferrocenyl thioketones with donor–acceptor cyclopropanes

  • Grzegorz Mlostoń,
  • Mateusz Kowalczyk,
  • André U. Augustin,
  • Peter G. Jones and
  • Daniel B. Werz

Beilstein J. Org. Chem. 2020, 16, 1288–1295, doi:10.3762/bjoc.16.109

Graphical Abstract
  • molecular structures of cis-9c and trans-9d drawn using 50% probability displacement ellipsoids. The terminology cis and trans referred to the relative orientation of Ph and Fc groups. Synthesis of spirotetrahydrothiophenes 3 via non-concerted [3 + 2]-cycloadditions of thiocarbonyl ylide 1 with electron
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2020

Fluorinated maleimide-substituted porphyrins and chlorins: synthesis and characterization

  • Valentina A. Ol’shevskaya,
  • Elena G. Kononova and
  • Andrei V. Zaitsev

Beilstein J. Org. Chem. 2019, 15, 2704–2709, doi:10.3762/bjoc.15.263

Graphical Abstract
  • ylide, generated in situ from sarcosine and paraformaldehyde. The reaction of chlorin 9 with the excess of NaN3 in DMF/DMSO resulted in tetraazide chlorin 10 in 85% yield after the purification. The reduction of azide groups in chlorin 10 with SnCl2 in MeOH gave tetraamino-substituted chlorin 11 which
PDF
Album
Supp Info
Letter
Published 13 Nov 2019

Unexpected one-pot formation of the 1H-6a,8a-epiminotricyclopenta[a,c,e][8]annulene system from cyclopentanone, ammonia and dimethyl fumarate. Synthesis of highly strained polycyclic nitroxide and EPR study

  • Sergey A. Dobrynin,
  • Igor A. Kirilyuk,
  • Yuri V. Gatilov,
  • Andrey A. Kuzhelev,
  • Olesya A. Krumkacheva,
  • Matvey V. Fedin,
  • Michael K. Bowman and
  • Elena G. Bagryanskaya

Beilstein J. Org. Chem. 2019, 15, 2664–2670, doi:10.3762/bjoc.15.259

Graphical Abstract
  • observed in a one-pot synthesis from cyclopentanone, dimethyl fumarate and ammonium acetate. This multistep reaction includes 1,3-dipolar cycloaddition of dimethyl fumarate to the cyclic azomethine ylide formed in situ from cyclopentanone and ammonia. The polycyclic amine product was easily converted into
  • nitroxide [4]. Here we report the unexpected formation of a highly strained polycyclic amine from cyclopentanone, dimethyl fumarate and ammonium acetate. This multistep reaction obviously includes the 1,3-dipolar cycloaddition of dimethyl fumarate with cyclic azomethine ylide formed in situ from
  • heterocycle formation [11]. Presumably, a prototropic shift in the enamine-imine intermediate 4 is followed by electrocyclization to the cyclic azomethine ylide, which then reacts with dimethyl fumarate in a 1,3-dipolar cycloaddition. The suggested mechanism accounts for the trans-position of the methyne
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
PDF
Album
Review
Published 23 Sep 2019

N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds

  • Iwona E. Głowacka,
  • Aleksandra Trocha,
  • Andrzej E. Wróblewski and
  • Dorota G. Piotrowska

Beilstein J. Org. Chem. 2019, 15, 1722–1757, doi:10.3762/bjoc.15.168

Graphical Abstract
  • moiety (Scheme 13) [51]. Before conversion of the chloromethyl group into a phosphonium salt the chiral auxiliary was removed. The reaction of the ylide (R)-45 prepared from the chloride (R)-44 with benzaldehyde afforded (E)-alkene (S)-46 which after hydrogenation and basic hydrolysis gave ʟ
  • four stereoisomers with low (ca. 3:1) diastereoselectivity and in a non-enantioselective manner (Scheme 46) [21]. Undoubtedly, it was the 1,3-dipolar cycloaddition of the azomethine ylide 180 with an electron-rich alkene. Fortunately, cycloadducts (2R,3R,4S)-, (2S,3S,4R)-, (2R,3S,4R)- and (2S,3R,4S
PDF
Album
Review
Published 23 Jul 2019

Synthesis of pyrrolo[1,2-a]quinolines by formal 1,3-dipolar cycloaddition reactions of quinolinium salts

  • Anthony Choi,
  • Rebecca M. Morley and
  • Iain Coldham

Beilstein J. Org. Chem. 2019, 15, 1480–1484, doi:10.3762/bjoc.15.149

Graphical Abstract
  • could be converted to other derivatives by Suzuki–Miyaura coupling, reduction or oxidation reactions. Keywords: azomethine ylide; cycloaddition; heterocycle; pyrrolidine; stereoselective; Introduction Cycloaddition reactions of azomethine ylides are an important class of pericyclic reactions that give
  • ylide, or by condensation of a primary amine with an aldehyde to give an imine followed by prototropy or deprotonation to give N-metalated azomethine ylides (see, for example, [5][6][7][8][9][10][11][12][13][14][15][16][17][18]). An alternative method is to prepare a salt of a heterocycle, typically by
  • quinolinium salts that have been reported in the literature involve ketones as electron-withdrawing groups to stabilise the intermediate ylide [39][40][41][42][43][44][45][46][47][48][49]; for example, the ketone 1 is known to undergo reaction with alkenes 2 (Z = electron-withdrawing group) to give the
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2019

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • –Stevens-derived diazoesters 23 and 27, respectively. Only triethylsilyl-protected diazoester 27 proved viable to deliver a diazoketone 28. The latter underwent stereoselective carbonyl ylide formation–cycloaddition with methyl glyoxylate and acid-catalysed rearrangement of the resulting cycloadduct 29, to
  • area have recently culminated in two communicated syntheses of 6,7-dideoxysqualestatin H5 (DDSQ (2), Figure 1) [12][13]. The centrepiece of both of these strategies is a rhodium(II)-catalysed tandem carbon ylide formation from a diazoketone 3 (Scheme 1) and stereoselective [3 + 2] cycloaddition with a
  • (2). Natural product examples containing the monoalkylated tartaric acid motif. Carbonyl ylide cycloaddition–rearrangement to the squalestatin core [12][13]. Tartrate alkylation strategy to cycloaddition substrate. Conversion of α-ketoester to α-diazoester. Seebach’s tartrate alkylation and
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

An efficient synthesis of the guaiane sesquiterpene (−)-isoguaiene by domino metathesis

  • Yuzhou Wang,
  • Ahmed F. Darweesh,
  • Patrick Zimdars and
  • Peter Metz

Beilstein J. Org. Chem. 2019, 15, 858–862, doi:10.3762/bjoc.15.83

Graphical Abstract
  • of the aldehyde function as the dimethyl acetal [16][17][18], hydroboration and oxidative work-up of 10 provided a mixture of epimeric alcohols 11 that was unified by Ley–Griffith oxidation [19] to give ketone 12 [20]. Subsequent Wittig reaction with ylide 13 and acetal cleavage of the resultant
  • keto aldehyde 18. Chemoselective dibromoolefination with ylide 19 prepared from dibromomethyltriphenylphosphonium bromide and sodium tert-butoxide [22] led to ketone 20 virtually without erosion of the relative configuration (dr = 22:1). After subjecting 20 to carbonyl olefination with unsaturated
  • ylide 21 [8] followed by alkyne generation [23] with butyllithium in a one-pot process, trienyne 3 was obtained as a 1.6:1 mixture of E and Z olefin isomers. Due to the presence of the isopropyl group at the disubstituted alkene [24] of 3, 30 mol % of the second generation Grubbs catalyst 22 were
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2019

Synthesis of 2H-furo[2,3-c]pyrazole ring systems through silver(I) ion-mediated ring-closure reaction

  • Vaida Milišiūnaitė,
  • Rūta Paulavičiūtė,
  • Eglė Arbačiauskienė,
  • Vytas Martynaitis,
  • Wolfgang Holzer and
  • Algirdas Šačkus

Beilstein J. Org. Chem. 2019, 15, 679–684, doi:10.3762/bjoc.15.62

Graphical Abstract
  • -inflammatory [5], and antidiabetic agents [6]. The numerous known methods for the preparation of these compounds are generally based on multicomponent reactions of an aromatic aldehyde, a β-keto ester, a hydrazine and malononitrile [7]. In a similar reaction using a pyridinium ylide instead of malononitrile
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2019

Computational characterization of enzyme-bound thiamin diphosphate reveals a surprisingly stable tricyclic state: implications for catalysis

  • Ferran Planas,
  • Michael J. McLeish and
  • Fahmi Himo

Beilstein J. Org. Chem. 2019, 15, 145–159, doi:10.3762/bjoc.15.15

Graphical Abstract
  • applications. All ThDP-catalyzed reactions require the reaction of the ThDP ylide (the activated state of the cofactor) with the substrate. Given that the cofactor can adopt up to seven states on an enzyme, identifying the factors affecting the stability of the pre-reactant states is important for the overall
  • inhibitor). Overall, the calculations reveal that the relative stabilities of the cofactor states are greatly affected by the presence and identity of the bound ligands. A surprising finding is that benzoylformate binding, while favoring ylide formation, provided even greater stabilization to a
  • catalytically inactive tricyclic state. Conversely, the inhibitor binding greatly destabilized the ylide formation. Together, these observations have significant implications for the reaction kinetics of the ThDP-dependent enzymes, and, potentially, for the use of unnatural substrates in such reactions
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2019
Other Beilstein-Institut Open Science Activities