Search results

Search for "Bacillus subtilis" in Full Text gives 55 result(s) in Beilstein Journal of Organic Chemistry.

Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10

  • Teresa Weise,
  • Marco Kai,
  • Anja Gummesson,
  • Armin Troeger,
  • Stephan von Reuß,
  • Silvia Piepenborn,
  • Francine Kosterka,
  • Martin Sklorz,
  • Ralf Zimmermann,
  • Wittko Francke and
  • Birgit Piechulla

Beilstein J. Org. Chem. 2012, 8, 579–596, doi:10.3762/bjoc.8.65

Graphical Abstract
  • Rossall [29] described similar results, since the addition of D-glucose but not L-glucose lead to the formation of inhibitory volatiles by Bacillus subtilis. The milder inhibitory potential of X. c. pv. vesicatoria 85-10 growing on NBG, may be explained by the suggestions that (i) inhibitory volatiles
  • by PTR–MS [56][57]. Nevertheless in our experiments with X. c. pv. vesicatoria 85-10 we did not detect any significant signal at m/z = 28 corresponding to HCN. Ammonia emissions by X. vesicatoria and of two Bacillus subtilis strains in cocultivation with Neurospora crassa were described [58][59
PDF
Album
Full Research Paper
Published 17 Apr 2012

Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum

  • Friederike I. Nollmann,
  • Andrea Dowling,
  • Marcel Kaiser,
  • Klaus Deckmann,
  • Sabine Grösch,
  • Richard ffrench-Constant and
  • Helge B. Bode

Beilstein J. Org. Chem. 2012, 8, 528–533, doi:10.3762/bjoc.8.60

Graphical Abstract
  • different Gram-positive (Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeroginosa) bacteria, as well as yeast (Candida albicans, Saccharomyces cerivisiae). However, consistent with the published data [12], no antibacterial or antifungal
PDF
Album
Supp Info
Letter
Published 11 Apr 2012

Carbamate derivatives and sesquiterpenoids from the South China Sea gorgonian Melitodes squamata

  • Li-Si Huang,
  • Fei He,
  • Hui Huang,
  • Xiao-Yong Zhang and
  • Shu-Hua Qi

Beilstein J. Org. Chem. 2012, 8, 170–176, doi:10.3762/bjoc.8.18

Graphical Abstract
  • 1, 2, 6, and 7 have not been previously reported. The cytotoxicity of 1–9 against human malignant melanoma A735 and cervical carcinoma HeLa cell lines, and the antibacterial activity of 1–5 and 7 towards bacteria Escherichia coli, Bacillus subtilis and Micrococcus luteus were evaluated. The possible
  • by MTT assay. The results show that 1–9 does not exhibit cytotoxicity against A735 and HeLa cell lines with IC50 > 200 μg/mL. Antibacterial activity of compounds 1–5 at a concentration of 25 μg/disc (diameter 6 mm) was measured against bacteria Escherichia coli, Bacillus subtilis, and Micrococcus
PDF
Album
Full Research Paper
Published 31 Jan 2012

Michael-type addition of azoles of broad-scale acidity to methyl acrylate

  • Sławomir Boncel,
  • Kinga Saletra,
  • Barbara Hefczyc and
  • Krzysztof Z. Walczak

Beilstein J. Org. Chem. 2011, 7, 173–178, doi:10.3762/bjoc.7.24

Graphical Abstract
  • . Other reaction conditions including enzymatic catalysis (Bacillus subtilis) [13], zinc-active-site acylases from Escherichia coli and Aspergillus oryzae [23] as well as ultrasonic irradiation in the presence of montmorillonite [14] have also been reported. In addition, there has been several recent
PDF
Album
Supp Info
Letter
Published 08 Feb 2011

Pyridinium based amphiphilic hydrogelators as potential antibacterial agents

  • Sayanti Brahmachari,
  • Sisir Debnath,
  • Sounak Dutta and
  • Prasanta Kumar Das

Beilstein J. Org. Chem. 2010, 6, 859–868, doi:10.3762/bjoc.6.101

Graphical Abstract
  • (Bacillus subtilis and Micrococcus luteus) and Gram-negative (Escherichia coli and Klebsiella aerogenes) bacteria. Minimum inhibitory concentrations (MIC), the lowest amphiphile concentration at which no viable bacterial cell is present, are presented in Table 1. Both 1 and 2 were found to be effective in
  • against representative Gram-positive and Gram-negative bacteria. Gram-positive bacteria used in the present study were Bacillus subtilis and Micrococcus luteus. Gram-negative bacteria investigated include Escherichia coli and Klebsiella aerogenes. Investigations of antibacterial activities were performed
PDF
Album
Full Research Paper
Published 21 Sep 2010
Other Beilstein-Institut Open Science Activities