Search results

Search for "energy transfer" in Full Text gives 110 result(s) in Beilstein Journal of Organic Chemistry.

Towards triptycene functionalization and triptycene-linked porphyrin arrays

  • Gemma M. Locke,
  • Keith J. Flanagan and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2020, 16, 763–777, doi:10.3762/bjoc.16.70

Graphical Abstract
  • nickel porphyrin is acting as the acceptor. An electron/energy transfer is occurring between the two porphyrins, therefore, when the molecule is excited at the wavelength of the zinc porphyrin, the fluorescence emission ordinarily observed for the zinc porphyrin does not occur as the energy has been
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • in photocatalysis using copper complexes. Their applications in various reactions, such as ATRA, reduction, oxidation, proton-coupled electron transfer, and energy transfer reactions are discussed. Keywords: ATRA reactions; copper catalysis; energy transfer; oxidation; PCET reactions; photocatalysis
  • ) provided a drastic change of paradigm to the community. Indeed, photocatalysis allows carrying out photochemical reactions in the visible region (redox transformation and energy transfer process). This tremendous progress provided a huge gain of selectivity in photochemical transformations. Indeed, as most
  • . The use of either homoleptic or heteroleptic complexes in atom transfer radical addition (ATRA) reactions, reductions, oxidations, proton-coupled electron transfer (PCET) reactions, and reactions based on energy transfer will be discussed. 1 Homoleptic Cu(I) complexes Homoleptic complexes based on
PDF
Album
Review
Published 23 Mar 2020

Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0

  • Bernd Strehmel,
  • Christian Schmitz,
  • Ceren Kütahya,
  • Yulian Pang,
  • Anke Drewitz and
  • Heinz Mustroph

Beilstein J. Org. Chem. 2020, 16, 415–444, doi:10.3762/bjoc.16.40

Graphical Abstract
  • the ground state (S0), intermolecular energy transfer from vibrationally hot molecules to their cold surrounding (vibrational cooling = VC) [73][74], and fluorescence (F) [75][76]. Most likely, nonradiative deactivation of such a hot molecule could be the transfer of its energy by collision with
PDF
Album
Supp Info
Review
Published 18 Mar 2020

p-Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies

  • Panagiotis S. Gritzapis,
  • Panayiotis C. Varras,
  • Nikolaos-Panagiotis Andreou,
  • Katerina R. Katsani,
  • Konstantinos Dafnopoulos,
  • George Psomas,
  • Zisis V. Peitsinis,
  • Alexandros E. Koumbis and
  • Konstantina C. Fylaktakidou

Beilstein J. Org. Chem. 2020, 16, 337–350, doi:10.3762/bjoc.16.33

Graphical Abstract
  • [78][80]. Acetophenone (AP) is such a compound, that when initially excited to its first singlet excited state, exhibits a singlet-to-triplet conversion quantum yield close to 100% [81] and has been used for its triplet energy transfer [82]. In order to experimentally prove that DNA dissociation
  • oxime carbamates 8–13 might be excited at their triplet states via triplet state energy transfer from acetophenone as a sensitizer, dissociate to their iminyl/carbamoyloxyl and subsequent anilinyl radicals, attack DNA and cleave it (Figure 7). As shown in Figure 8 none of the compounds show any cleavage
  • fluorenone (FL) and carotene (CR), which exhibit low triplet state energy (≈50 and 19 kcal/mol, respectively) [83] and may, acting as a triplet quencher, accept energy transfer from oxime carbamate 12, having now the latter compound as the sensitizer. In this case we expect to have decrease or elimination of
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • Figure 2. The most frequently used mechanisms of converting light energy into chemical energy using photoredox catalysts are: (i) photoredox catalysis; (ii) organometallic excitation; (iii) light-induced atom transfer, and (iv) energy transfer. Basically, a photoredox catalyst transforms light energy
  • ]. In photoredox catalysis, visible light gets absorbed by the photocatalyst (PC), which transitions into a photoexcited state (*PC) that can undergo either energy transfer or redox pathways. As can be seen in Figure 4, the redox pathway consists of reductive and oxidative quenching pathways
PDF
Album
Review
Published 26 Feb 2020

A photochemical determination of luminescence efficiency of upconverting nanoparticles

  • Baptiste Amouroux,
  • Clément Roux,
  • Jean-Claude Micheau,
  • Fabienne Gauffre and
  • Christophe Coudret

Beilstein J. Org. Chem. 2019, 15, 2671–2677, doi:10.3762/bjoc.15.260

Graphical Abstract
  • lanthanides’ spectroscopic properties (regular level spacing and long excited states lifetimes), one emitting ion can undergo several energy transfer processes before relaxing radiatively [15], making the overall process fundamentally different form second harmonic generation or two-photon absorption
  • because the production of one green photon requires three energy transfer steps from excited ytterbium ions. Despite this very weak emission rate, such nanoparticles can be used to induce local photochemistry. Thus, the group of Zvyagin has developed an in situ photodynamic therapy using quite large
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Arylisoquinoline-derived organoboron dyes with a triaryl skeleton show dual fluorescence

  • Vânia F. Pais,
  • Tristan Neumann,
  • Ignacio Vayá,
  • M. Consuelo Jiménez,
  • Abel Ros and
  • Uwe Pischel

Beilstein J. Org. Chem. 2019, 15, 2612–2622, doi:10.3762/bjoc.15.254

Graphical Abstract
  • for dye 17). These transients showed lifetimes in the microsecond range (τT = 4.2 μs (16) and 4.4 μs (17)), were efficiently quenched by oxygen (bimolecular quenching constant kq ca. 1.1–1.2 × 109 M−1s−1), and led to the energy-transfer triplet-sensitization of β-carotene (observation of the triplet
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2019

Targeted photoswitchable imaging of intracellular glutathione by a photochromic glycosheet sensor

  • Xianzhi Chai,
  • Hai-Hao Han,
  • Yi Zang,
  • Jia Li,
  • Xiao-Peng He,
  • Junji Zhang and
  • He Tian

Beilstein J. Org. Chem. 2019, 15, 2380–2389, doi:10.3762/bjoc.15.230

Graphical Abstract
  • remarkably quenched to ca. 30% (ΦF = 0.085, Table S1 in Supporting Information File 1) through an efficient intramolecular fluorescence resonance energy transfer (FRET) mechanism [29][30] after the photocyclization of Glyco-DTE. The fluorescence was fully recovered by irradiation with visible light and the
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2019

Excited state dynamics for visible-light sensitization of a photochromic benzil-subsituted phenoxyl-imidazolyl radical complex

  • Yoichi Kobayashi,
  • Yukie Mamiya,
  • Katsuya Mutoh,
  • Hikaru Sotome,
  • Masafumi Koga,
  • Hiroshi Miyasaka and
  • Jiro Abe

Beilstein J. Org. Chem. 2019, 15, 2369–2379, doi:10.3762/bjoc.15.229

Graphical Abstract
  • acts as a singlet photosensitizer for PIC by the Dexter-type energy transfer. Visible-light sensitized photochromic reactions of PIC are important for expanding the versatility of potential applications to life sciences and materials science. Keywords: biradical; energy transfer; photochromism
  • of the photochromic reactions to visible light are to extend the π-conjugation and to utilize photosensitizers. Especially, triplet photosensitizers, which form the triplet state of a molecule by the triplet–triplet energy transfer, have been frequently used in photoresists, photodynamic therapy, and
  • similar to other radical dissociation-type photochromic molecules such as HABI and pentaarylbiimidazole (PABI) [33][34][35]. Therefore, if we could substitute a singlet photosensitizer unit to PIC, the visible-light sensitivity could be achieved by singlet–singlet energy transfer. The visible-light
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2019

Aggregation-induced emission effect on turn-off fluorescent switching of a photochromic diarylethene

  • Luna Kono,
  • Yuma Nakagawa,
  • Ayako Fujimoto,
  • Ryo Nishimura,
  • Yohei Hattori,
  • Toshiki Mutai,
  • Nobuhiro Yasuda,
  • Kenichi Koizumi,
  • Satoshi Yokojima,
  • Shinichiro Nakamura and
  • Kingo Uchida

Beilstein J. Org. Chem. 2019, 15, 2204–2212, doi:10.3762/bjoc.15.217

Graphical Abstract
  • decreased gradually upon UV light irradiation accompanied with the formation of 1c, because of excitation energy transfer from the ESIPT moiety to the closed-ring isomer (Figure 5) [4]. The wavelengths of absorption (Table 3) and fluorescence (Table 4) were obtained computationally by using density
  • intermolecular Förster Resonance Energy Transfer (FRET) process between the fluorescent units and the photochromic moieties in their closed form within the aggregated state [29]. The crystal did not show any vapochromism, while a dramatic fluorescent color change from green to pink was observed when chloroform
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2019

Anomeric sugar boronic acid analogues as potential agents for boron neutron capture therapy

  • Daniela Imperio,
  • Erika Del Grosso,
  • Silvia Fallarini,
  • Grazia Lombardi and
  • Luigi Panza

Beilstein J. Org. Chem. 2019, 15, 1355–1359, doi:10.3762/bjoc.15.135

Graphical Abstract
  • ; Introduction Boron neutron capture therapy (BNCT) belongs to the so-called binary therapies for cancer treatment. It is based on the fission reaction after a low-energy neutron capture by a 10B atom. The neutron capture reaction gives rise to two high linear energy transfer (LET) particles (an α-particle and a
PDF
Album
Supp Info
Full Research Paper
Published 19 Jun 2019

N-doped carbon dots covalently functionalized with pillar[5]arenes for Fe3+ sensing

  • Jia Gao,
  • Ming-Xue Wu,
  • Dihua Dai,
  • Zhi Cai,
  • Yue Wang,
  • Wenhui Fang,
  • Yan Wang and
  • Ying-Wei Yang

Beilstein J. Org. Chem. 2019, 15, 1262–1267, doi:10.3762/bjoc.15.123

Graphical Abstract
  • , quenching performance can be contributed to the energy transfer between ions and the materials [26]. Meanwhile, the UV–vis absorption peaks of CCDs exhibited no shift and regeneration before and after Fe3+ sensing, indicating that the fluorescence quenching is not resulted from the formation of new
PDF
Album
Supp Info
Letter
Published 07 Jun 2019

Mechanochemical amorphization of chitin: impact of apparatus material on performance and contamination

  • Thomas Di Nardo and
  • Audrey Moores

Beilstein J. Org. Chem. 2019, 15, 1217–1225, doi:10.3762/bjoc.15.119

Graphical Abstract
  • ” kinetic energy from the milling media by reducing or increasing the milled powder ratio [26]. Furthermore, the size of the jar, the size, mass [28] and number of balls [29][49][50], as well as jar filling [26][30] will affect kinetic energy transfer. Although some comparisons on milling media hardness
  • composition with either a diameter of 9.5 mm or mass of approximately 2 g. We could determine that Vickers hardness is a key parameter determining the ability to perform amorphization of biomass materials especially when considering efficient kinetic energy transfer [59]. Finally, the effect of materials
  • and 212 ppm. While Vickers hardness can give a good indication of impact energy transfer from ball to material, it did not correlate as well with the contamination trend. It suggests also that metal release during milling took place from scratching between the ball, the powder and the jar
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Degenerative xanthate transfer to olefins under visible-light photocatalysis

  • Atsushi Kaga,
  • Xiangyang Wu,
  • Joel Yi Jie Lim,
  • Hirohito Hayashi,
  • Yunpeng Lu,
  • Edwin K. L. Yeow and
  • Shunsuke Chiba

Beilstein J. Org. Chem. 2018, 14, 3047–3058, doi:10.3762/bjoc.14.283

Graphical Abstract
  • is initiated through triplet-sensitization of xanthates by the long-lived triplet state of the iridium-based photocatalyst. Keywords: energy transfer; olefin; photocatalysis; radical; xanthate; Introduction A degenerative radical transfer of xanthates to olefins has been developed as a robust
  • rate was observed compared to the optimal reaction conditions (Table 1, entry 9). In principle, visible-light-mediated photocatalysis can serve for electron transfer (for either oxidation or reduction) and/or for energy transfer. We found that the reduction potential Ep/2 of xanthate 1a is −1.78 V vs
  • state of the photocatalyst is a key factor for the energy transfer mechanism. To obtain a detailed mechanistic insight, steady-state photoluminescence (PL) quenching of photocatalyst 8 was examined using xanthate 1a and 1-octene (2a) as potential quenchers (Figure 1). The intensity of the PL peak of
PDF
Album
Supp Info
Full Research Paper
Published 13 Dec 2018

Photocatalyic Appel reaction enabled by copper-based complexes in continuous flow

  • Clémentine Minozzi,
  • Jean-Christophe Grenier-Petel,
  • Shawn Parisien-Collette and
  • Shawn K. Collins

Beilstein J. Org. Chem. 2018, 14, 2730–2736, doi:10.3762/bjoc.14.251

Graphical Abstract
  • ]. Specifically, our group has demonstrated that heteroleptic Cu(I) complexes [19][20][21] have significant potential as photocatalysts that can promote a variety of mechanistically distinct photochemical transformations including single electron transfer (SET), energy transfer (ET), and proton-coupled electron
PDF
Album
Supp Info
Letter
Published 30 Oct 2018

Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source

  • Tetsuaki Fujihara and
  • Yasushi Tsuji

Beilstein J. Org. Chem. 2018, 14, 2435–2460, doi:10.3762/bjoc.14.221

Graphical Abstract
  • importance, since the highly reactive intermediate can be generated by photochemical reaction such as electron transfer and energy transfer [43][44][45]. Among them, light-energy-driven CO2 fixation reactions via C–C bond formation are promising in terms of mimicking photosynthesis. In 2015, Murakami et al
PDF
Album
Review
Published 19 Sep 2018

Rational design of boron-dipyrromethene (BODIPY) reporter dyes for cucurbit[7]uril

  • Mohammad A. Alnajjar,
  • Jürgen Bartelmeß,
  • Robert Hein,
  • Pichandi Ashokkumar,
  • Mohamed Nilam,
  • Werner M. Nau,
  • Knut Rurack and
  • Andreas Hennig

Beilstein J. Org. Chem. 2018, 14, 1961–1971, doi:10.3762/bjoc.14.171

Graphical Abstract
  • the macrocycle would be desirable. One possibility is the utilization of monofunctionalized CBs with outer cavity-attached fluorescent dyes [22][24]. This principally allows for the modular construction of various Förster resonance energy transfer (FRET) pairs as demonstrated with a Cy3-attached CB7
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Recent advances in phosphorescent platinum complexes for organic light-emitting diodes

  • Cristina Cebrián and
  • Matteo Mauro

Beilstein J. Org. Chem. 2018, 14, 1459–1481, doi:10.3762/bjoc.14.124

Graphical Abstract
  • electrophosphorescent devices, the triplet nature of excited states localized on the active TMCs allows harvesting of both singlet and triplet electro-generated excitons through either direct trapping or energy transfer processes. As a consequence, the theoretical internal quantum efficiency rises from 25%, which
  • and an electroluminescence intensity of about 10 mW cm−2 at 9 V. Due to the triplet character of typical platinum(II) complex emission, these metal-based dopant phosphors are typically dispersed in high triplet energy hosts to suppress energy transfer processes onto the host matrix that detrimentally
  • that of other complexes bearing the bzimb tridentate ligand, with no influence of the connecting mode. Moreover, successful energy transfer was achieved upon doping thin films of TCTA:SPPO13 with the tridentate platinum complex, and high PLQY in the range 0.62–0.75 were achieved. These promising
PDF
Album
Review
Published 18 Jun 2018

Two novel blue phosphorescent host materials containing phenothiazine-5,5-dioxide structure derivatives

  • Feng-Ming Xie,
  • Qingdong Ou,
  • Qiang Zhang,
  • Jiang-Kun Zhang,
  • Guo-Liang Dai,
  • Xin Zhao and
  • Huai-Xin Wei

Beilstein J. Org. Chem. 2018, 14, 869–874, doi:10.3762/bjoc.14.73

Graphical Abstract
  • -performance for blue PhOLEDs [9][10][11][12]. Generally, ideal host materials are required to fulfill several requirements [13][14]: i) the triplet energy level (ET) should be higher for efficient energy transfer to the guest; ii) suitable energy levels appropriately aligned with those of the neighboring
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

D–A–D-type orange-light emitting thermally activated delayed fluorescence (TADF) materials based on a fluorenone unit: simulation, photoluminescence and electroluminescence studies

  • Lin Gan,
  • Xianglong Li,
  • Xinyi Cai,
  • Kunkun Liu,
  • Wei Li and
  • Shi-Jian Su

Beilstein J. Org. Chem. 2018, 14, 672–681, doi:10.3762/bjoc.14.55

Graphical Abstract
  • -1,1’-biphenyl (CBP) were vacuum co-deposited at a concentration of 8 wt % for photoluminescence quantum yield (PLQY) and time-resolved transient photoluminescence decay measurements. The concentration of the doped films was optimized to ensure complete energy transfer between the host and the guest
  • . PLQY measurements of 1:CBP and 2:CBP are 7% and 26%, respectively. The PLQY measurements of the doped films with lower concentration show varying degrees of deviation due to the incomplete energy transfer and the obvious luminescence from CBP (PLQY of 1 and 2 doped in CBP with 1 wt % are 2% and 10
  • directly because of the energy level difference between CBP and the emitter, which makes it possible for the OLEDs with such a low emitter concentration to achieve complete energy transfer. The performance of the fabricated devices is summarized in Table 5 while the J–V–L (current density–voltage–luminance
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2018

Fluorogenic PNA probes

  • Tirayut Vilaivan

Beilstein J. Org. Chem. 2018, 14, 253–281, doi:10.3762/bjoc.14.17

Graphical Abstract
  • probes with nanomaterials as an external quencher. In addition, the uncharged backbone of PNA offers other unique designs, including the combination of PNA probes with cationic conjugated polymers that simultaneously act as a light harvesting antenna and fluorescent resonance energy transfer (FRET
PDF
Album
Review
Published 29 Jan 2018

Synthesis and spectroscopic properties of β-meso directly linked porphyrin–corrole hybrid compounds

  • Baris Temelli and
  • Hilal Kalkan

Beilstein J. Org. Chem. 2018, 14, 187–193, doi:10.3762/bjoc.14.13

Graphical Abstract
  • intramolecular energy transfer between macrocycles [38]. As a part of our ongoing research on porphyrin–corrole conjugates, herein we describe a convenient synthesis of a series of novel directly linked porphyrin–corrole hybrid compounds. For this purpose, acid-catalyzed reactions of dipyrromethanes and
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2018

Fluorescent nucleobase analogues for base–base FRET in nucleic acids: synthesis, photophysics and applications

  • Mattias Bood,
  • Sangamesh Sarangamath,
  • Moa S. Wranne,
  • Morten Grøtli and
  • L. Marcus Wilhelmsson

Beilstein J. Org. Chem. 2018, 14, 114–129, doi:10.3762/bjoc.14.7

Graphical Abstract
  • , SE-412 96 Gothenburg, Sweden 10.3762/bjoc.14.7 Abstract Förster resonance energy transfer (FRET) between a donor nucleobase analogue and an acceptor nucleobase analogue, base–base FRET, works as a spectroscopic ruler and protractor. With their firm stacking and ability to replace the natural nucleic
  • that complements NMR and X-ray, normally at lower resolution, is Förster resonance energy transfer (FRET) [3][4]. FRET and especially single-molecule FRET (as an effect of a low number of biomolecules under study) has the advantage of enabling structure and dynamics investigations in living cells [3][5
  • ][6]. FRET is a process that depends on the radiationless energy transfer between a donor and an acceptor molecule [7]. The reason that it can be used as a structure and dynamics technique is that it depends heavily on the distance and relative orientation between the donor and acceptor. Typical
PDF
Album
Review
Published 10 Jan 2018

Polarization spectroscopy methods in the determination of interactions of small molecules with nucleic acids – tutorial

  • Tamara Šmidlehner,
  • Ivo Piantanida and
  • Gennaro Pescitelli

Beilstein J. Org. Chem. 2018, 14, 84–105, doi:10.3762/bjoc.14.5

Graphical Abstract
PDF
Album
Review
Published 08 Jan 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • 1O2 is generated by photoexcited Rose Bengal via energy transfer and abstracts a hydrogen atom from the aryl thiol. Radical addition on the indole derivative, oxidation and rearomatization via deprotonation yields the corresponding sulfenylated indole derivative. Very recently, Wei, Wang and co
  • is accomplished by in situ generated singlet oxygen, which is generated by energy-transfer of the excited state of Eosin Y and only possible under aerobic conditions. The authors also found that zinc acetate is beneficial for the selective oxidation. A series of electron-rich and electron-poor
  • , trifluoromethyl groups and halides, but iodides led to polymer formation. Li and Wang developed a method for the α-C(sp3)–H thiolation of ethers, using Acridine Red as photosensitizer and tert-butyl hydroperoxide (TBHP) as oxidant (Scheme 38) [73]. They reported that photoexcited Acridine Red performs an energy
PDF
Album
Review
Published 05 Jan 2018
Other Beilstein-Institut Open Science Activities