Search results

Search for "peroxide" in Full Text gives 229 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • iron-based small molecule catalyst and hydrogen peroxide as oxidizing agent (Scheme 25A and B) [156]. This pioneering methodology changed the way how complex molecules and pharmaceuticals are synthesized, by using the steric and electronic properties of the substrates to achieve selectivity, without
PDF
Album
Review
Published 30 Jul 2021

Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones

  • Girish Suresh Yedase,
  • Sumit Kumar,
  • Jessica Stahl,
  • Burkhard König and
  • Veera Reddy Yatham

Beilstein J. Org. Chem. 2021, 17, 1727–1732, doi:10.3762/bjoc.17.121

Graphical Abstract
  • Br2, MnO2, hypervalent iodine reagents, chromium-based reagents, activated dimethyl sulfoxide, KMnO4, OsO4, or metal-based catalysts and peroxide were used [7][8][9][10][11][12][13][14][15][16][17]. Most of these protocols produce harmful waste and some of the oxidizing reagents are considered toxic
  • •−. Photolysis of the CeIV–OBn complex (II), leads to the formation of the corresponding benzyloxy radical (III) and regenerates the CeIII species. A further abstraction of a benzylic hydrogen atom by the peroxide radical then generates the final product 2 [48]. However, at this moment we cannot exclude the
PDF
Album
Supp Info
Letter
Published 23 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • of the potential of ATR in olefin hydrofunctionalization is the methodology developed by the Liu group [119], in which a carbon-centered radical is generated from simple alkanes instead of the more usual halogenated compounds. The authors reported that, in the presence of dicumyl peroxide (DCP) as a
PDF
Album
Review
Published 07 Jul 2021

Photoinduced post-modification of graphitic carbon nitride-embedded hydrogels: synthesis of 'hydrophobic hydrogels' and pore substructuring

  • Cansu Esen and
  • Baris Kumru

Beilstein J. Org. Chem. 2021, 17, 1323–1334, doi:10.3762/bjoc.17.92

Graphical Abstract
  • , ascorbic acid/hydrogen peroxide, respectively. The mixture was immediately placed in a Petri dish to complete the gelation via free radical polymerization under dark conditions. After 3 hours, the resulting hydrogel was purified with water to remove the unreacted species (monomers and redox mediators
  • isothiocyanate conjugate (FITC-Albumin, Sigma-Aldrich), calcium chloride (CaCl2, 97%, Alfa Aesar), cyanuric acid (98%, Sigma-Aldrich), fluoresceinisothiocyanat-dextran (FITC–Dextran, 10.000 Mw), hydrochloric acid (HCl, 37%, Sigma-Aldrich), hydrochloric acid (1 M solution, Sigma-Aldrich), hydrogen peroxide (30
  • -W). 9 g freshly prepared CM-W, 0.8 g DMA, 0.150 g MBA and 0.150 g AsA were weighted into a flask, mixed for 5 minutes, then sonicated for 20 seconds. Following that, 1.5 mL hydrogen peroxide solution was injected into the mixture and placed in a Petri dish after mixing thoroughly. The Petri dish was
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
PDF
Album
Review
Published 12 May 2021

Synthetic accesses to biguanide compounds

  • Oleksandr Grytsai,
  • Cyril Ronco and
  • Rachid Benhida

Beilstein J. Org. Chem. 2021, 17, 1001–1040, doi:10.3762/bjoc.17.82

Graphical Abstract
  • such as lead tetraacetate, potassium permanganate, or refluxing hydrogen peroxide were shown to produce urea-derived degradation products [3]. Biguanides also possess a remarkable capability to form stable metal complexes, a property that was already noticed by B. Rathke in 1879 [4]. Indeed, he relied
PDF
Album
Review
Published 05 May 2021

Manganese/bipyridine-catalyzed non-directed C(sp3)–H bromination using NBS and TMSN3

  • Kumar Sneh,
  • Takeru Torigoe and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2021, 17, 885–890, doi:10.3762/bjoc.17.74

Graphical Abstract
  • radical C(sp3)−H halogenation at the benzylic and allylic position using N-halosuccinimide with azobisisobutyronitrile or benzoyl peroxide as a radical initiator is known as the Wohl–Ziegler bromination reaction, which requires heating, acidic/basic conditions, and/or UV irradiation (Scheme 1a) [17][18
PDF
Album
Supp Info
Letter
Published 22 Apr 2021

Synthesis of bis(aryloxy)fluoromethanes using a heterodihalocarbene strategy

  • Carl Recsei and
  • Yaniv Barda

Beilstein J. Org. Chem. 2021, 17, 813–818, doi:10.3762/bjoc.17.70

Graphical Abstract
  • %. Synthesis of 1. Reagents and conditions: (a) 1,3-dibromo-5,5-dimethylhydantoin, benzoyl peroxide, (CH2Cl)2, reflux, 4 h, 88%; (b) 5,5-dimethyl-3-(4H-isoxazolyl) carbamimidothioate·HCl, K2CO3, MeCN/H2O, 50 °C, 1.5 h, 73%; (c) H2O2, Na2WO4, MeCN/H2O, 45 °C, 1.5 d, 66%. Synthesis of 11–13. Reagents and
PDF
Album
Supp Info
Letter
Published 12 Apr 2021

Synthesis, structural characterization, and optical properties of benzo[f]naphtho[2,3-b]phosphoindoles

  • Mio Matsumura,
  • Takahiro Teramoto,
  • Masato Kawakubo,
  • Masatoshi Kawahata,
  • Yuki Murata,
  • Kentaro Yamaguchi,
  • Masanobu Uchiyama and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2021, 17, 671–677, doi:10.3762/bjoc.17.56

Graphical Abstract
  • phosphorus atom of 2 was carried out; the results are shown in Scheme 1. The reaction of 2 with hydrogen peroxide or elemental sulfur afforded the corresponding phosphine oxide 3 and sulfide 4 in 92% and 88% yield, respectively. Treatment of 2 with methyl triflate afforded phospholium triflate 5 in 81% yield
PDF
Album
Supp Info
Letter
Published 05 Mar 2021

Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents

  • Anuj Kumar Chhalodia and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 569–580, doi:10.3762/bjoc.17.51

Graphical Abstract
  • minutes, 30% hydrogen peroxide solution (0.52 mL, 0.57 g, 5.0 mmol, 2.0 equiv) was added dropwise. The color of the reaction mixture changed from colorless to yellow. The reaction mixture was stirred for 30 minutes at room temperature. After completion of the reaction, EtOAc (10 mL) was added, causing
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2021

A new and efficient methodology for olefin epoxidation catalyzed by supported cobalt nanoparticles

  • Lucía Rossi-Fernández,
  • Viviana Dorn and
  • Gabriel Radivoy

Beilstein J. Org. Chem. 2021, 17, 519–526, doi:10.3762/bjoc.17.46

Graphical Abstract
  • greener oxidizing agents as molecular oxygen, hydrogen peroxide or tert-butyl hydroperoxide (TBHP) [14][15][16][17]. However, using any of these oxidants alone results in considerable low reactivity and selectivity in olefin epoxidation reactions. Thus, several transition-metal-based catalytic methods
  • solvent (DMF, MeCN, ethyl acetate, DMSO, solvent free) on the activity and selectivity of the nanocatalysts has been noted [27][41][42][43][44]. Furthermore, all the reported methodologies use either molecular oxygen together with an aldehyde as a co-reductant, or only a “green” peroxide (H2O2, TBHP) as
  • other hand, among the peroxide-free oxidation processes, a Co3O4/SBA-16 catalyst for the epoxidation of limonene in AcOEt [43] and a Co/HAP catalyst in DCM as the solvent [44] have been very recently reported. Both of these catalytic systems gave good conversions to the desired epoxides and allowed the
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2021

19F NMR as a tool in chemical biology

  • Diana Gimenez,
  • Aoife Phelan,
  • Cormac D. Murphy and
  • Steven L. Cobb

Beilstein J. Org. Chem. 2021, 17, 293–318, doi:10.3762/bjoc.17.28

Graphical Abstract
PDF
Album
Review
Published 28 Jan 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • piperidine (17). The synthetic sequence performed by the authors is described in Scheme 3. Oxidation of 17 in the presence of hydrogen peroxide, catalyzed by selenium dioxide provided tetrahydropyridine N-oxide 18 in 88% yield. 18 was treated with (R)-p-tolylsulfinylmethyllithium 25 in THF at −78 °C to
  • provide β-sulfinyl hydroxylamine 19 in a diastereoisomeric ratio of 67:33 in 52% yield. Oxidation of 19 to nitrone 20 occurred chemoselectivelly through treatment with a solution of hydrogen peroxide in 3 mol % of 5-ethyluminiflavin perchlorate (FIEt+.ClO4) as a catalyst in 55% yield. The reaction of β
PDF
Album
Review
Published 05 Jan 2021

Synthesis of imidazo[1,5-a]pyridines via cyclocondensation of 2-(aminomethyl)pyridines with electrophilically activated nitroalkanes

  • Dmitrii A. Aksenov,
  • Nikolai A. Arutiunov,
  • Vladimir V. Maliuga,
  • Alexander V. Aksenov and
  • Michael Rubin

Beilstein J. Org. Chem. 2020, 16, 2903–2910, doi:10.3762/bjoc.16.239

Graphical Abstract
  • -(bromomethyl)quinoline (21c) was prepared from commercially available 6-bromo-2-methylquinoline (22c, via radical bromination in the presence of NBS and dibenzoyl peroxide [51]. To this end, the methylquinoline 22c (3.33 g, 15 mmol) was dissolved in carbon tetrachloride (30 mL), and N-bromosuccinimide (2.94 g
  • , 16.5 mmol) was added, followed by dibenzoyl peroxide (194 mg, 0.80 mmol). The mixture was refluxed for 5–7 h while the reaction progress was monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature, the formed precipitate of succinimide was filtered off, and the filtrate
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2020

Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 2212–2259, doi:10.3762/bjoc.16.186

Graphical Abstract
  • sumanene-based trisulfone derivative 156 in the presence of hydrogen peroxide in AcOH as detailed in the Scheme 40. Liu et al. has revealed the functionalization of a sulfur-doped sumanene by means of perbromination followed by nucleophilic substitution as depicted in Scheme 41 [78]. They first performed
PDF
Album
Review
Published 09 Sep 2020

Metal-free synthesis of phosphinoylchroman-4-ones via a radical phosphinoylation–cyclization cascade mediated by K2S2O8

  • Qiang Liu,
  • Weibang Lu,
  • Guanqun Xie and
  • Xiaoxia Wang

Beilstein J. Org. Chem. 2020, 16, 1974–1982, doi:10.3762/bjoc.16.164

Graphical Abstract
  • better product yields as compared with the reactions performed at either 70 °C or 90 °C (Table 1, entries 2, 16, and 17). Then, various oxidants such as (NH4)2S2O8, Na2S2O8, TBHP (tert-butyl hydroperoxide), DTBP (di-tert-butyl peroxide), and dioxygen were tested and the results showed that K2S2O8
PDF
Album
Supp Info
Letter
Published 12 Aug 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • . Furthermore, a peroxide (TBHP) is needed to oxidize the Ir-based photoredox catalyst and to generate the acyl radical via hydrogen atom transfer. From the mechanistic perspective this synergistic dual catalytic system merging C–H activation and photocatalysis is similar to the one described by Sanford for the
PDF
Album
Review
Published 21 Jul 2020

Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Serena Benedetti,
  • Francesco Palma,
  • Stefania Santeusanio and
  • Fabio Mantellini

Beilstein J. Org. Chem. 2020, 16, 1606–1616, doi:10.3762/bjoc.16.133

Graphical Abstract
  • , namely pyrrolino-tetrahydroberberines, synthesized by some of us [68], exhibited enhanced antioxidant properties in comparison to THBER against a wide variety of pathophysiologically relevant oxidants such as peroxyl radicals, ferrous ion, and hydrogen peroxide [65]. In continuation of our ongoing
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles

  • Lívia Dikošová,
  • Júlia Laceková,
  • Ondrej Záborský and
  • Róbert Fischer

Beilstein J. Org. Chem. 2020, 16, 1313–1319, doi:10.3762/bjoc.16.112

Graphical Abstract
  • isoxazolidin-4-ols. The strategy relies on a highly regio- and trans-stereoselective hydroboration–oxidation reaction of the 4,5-unsubstituted 2,3-dihydroisoxazoles with basic hydrogen peroxide. The consecutive oxidation/reduction route, sequentially employing Dess–Martin periodinane and ʟ-selectride, is used
  • hydroxylamines using malonoyl peroxide, providing N-tosylated 3-aryl-substituted 4-hydroxyisoxazolidines in a highly stereoselective manner in favor of the C-3/4-trans isomers [27]. We believe that the 3-substituted isoxazolidin-4-ols, represented by the general structures of the trans and the cis stereoisomer 3
  • -hydroxyisoxazolidines by the treatment of boronic ester-substituted isoxazolidines with basic hydrogen peroxide has previously been described [30][31]. To start with, the phenyl-substituted 2,3-dihydroisoxazole 5a was chosen as the starting substrate. After optimizing Kang's reaction conditions in terms of the borane
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
  • , arylalkyl, and diaryl oxime radicals was also studied by EPR spectroscopy [53]. Radicals were generated under inert atmosphere directly in the EPR cavity by photolysis of the added di-tert-butyl peroxide (Scheme 1). The authors pointed out the complexity of the processes of iminoxyl radicals’ decomposition
  • iminoxyl radical 90. Presumably, the radical 90 underwent cyclization involving the azo group to form indazole 91. During the photolysis of a mixture of di-tert-butyl peroxide with oxime 92 containing an alkenyl fragment at temperatures from −30 to −10 °C, two signals were observed in the EPR spectrum with
  • -system. According to EPR data, the authors suggested that iminoxyl radicals 101 generated from oximes 100 by photolysis with the addition of the di-tert-butyl peroxide gave nitroxides 102 [123]. The widespread use of iminoxyl radicals in organic synthesis involving a radical addition to a C=C bond
PDF
Album
Review
Published 05 Jun 2020

Activated carbon as catalyst support: precursors, preparation, modification and characterization

  • Melanie Iwanow,
  • Tobias Gärtner,
  • Volker Sieber and
  • Burkhard König

Beilstein J. Org. Chem. 2020, 16, 1188–1202, doi:10.3762/bjoc.16.104

Graphical Abstract
  • the surface of the treated carbons in form of carboxyl groups, ketones, ether groups and carboxyl-carbonate structures is higher using nitric acid compared to hydrogen peroxide [116]. Nitrogen adsorption–desorption isotherms: The surface area and pore size distribution of solid catalyst materials can
PDF
Album
Review
Published 02 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • the peroxo radical III when using O2. Nicewicz and co-workers noticed that the presence of nucleophilic peroxide radicals generated from O2 led to the degradation of the classical Mes-Acr+ photocatalyst. The presence of bulky tert-butyl groups in the 3- and 6-positions provided a greater catalyst
  • -butyl peroxide (40.1), generating a hydroxy radical and a tert-butoxy radical. The latter promotes an H abstraction from the substrate tetrahydrofuran (8.1), giving access to an α-oxy C(sp3) radical, which is trapped by an alkyne 40.2, providing the desired vinylation product 40.3. Sulfur-centered
PDF
Album
Review
Published 29 May 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • UNLPF-12 afforded the Mannich products in 87–98% yields (Scheme 63) [40]. As previously shown (Scheme 50), the oxidation of amines to imines by singlet oxygen furnishes hydrogen peroxide as a byproduct. In 2014, Seeberger and co-workers used this byproduct, in a continuous-flow approach, as an
PDF
Album
Review
Published 06 May 2020
Other Beilstein-Institut Open Science Activities