Search results

Search for "sulfonamide" in Full Text gives 115 result(s) in Beilstein Journal of Organic Chemistry.

DMAP-assisted sulfonylation as an efficient step for the methylation of primary amine motifs on solid support

  • Johnny N. Naoum,
  • Koushik Chandra,
  • Dorit Shemesh,
  • R. Benny Gerber,
  • Chaim Gilon and
  • Mattan Hurevich

Beilstein J. Org. Chem. 2017, 13, 806–816, doi:10.3762/bjoc.13.81

Graphical Abstract
  • introduction of the o- or p-nitrobenzenesulfonyl groups to primary amines in the first step. The semi-protected sulfonamides can then undergo a selective mono-methylation via Mitsunobu reaction or by direct methylation. The reaction is completed by the selective removal of the sulfonamide group. Miller and
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2017

Chromium(II)-catalyzed enantioselective arylation of ketones

  • Gang Wang,
  • Shutao Sun,
  • Ying Mao,
  • Zhiyu Xie and
  • Lei Liu

Beilstein J. Org. Chem. 2016, 12, 2771–2775, doi:10.3762/bjoc.12.275

Graphical Abstract
  • ) was selected as the model reaction for optimization employing Kishi’s oxazoline/sulfonamides as the chiral ligands. A series of oxazoline/sulfonamide ligands (L1–L8) were tested and the results were summarized in Table 1. Four subgroups of R1 were studied (entries 1–4, Table 1) and isopropyl
  • ) was used, enantiopure indan-1-ol was obtained in 70% yield and 82% ee. Conclusion In summary, we have developed the first Cr-catalyzed enantioselective arylation of ketones in an intramolecular version using oxazoline/sulfonamide L8 as the catalyst. Both aliphatic and arylaliphatic ketones proceeded
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis

  • Darcy J. Atkinson,
  • Briar J. Naysmith,
  • Daniel P. Furkert and
  • Margaret A. Brimble

Beilstein J. Org. Chem. 2016, 12, 2325–2342, doi:10.3762/bjoc.12.226

Graphical Abstract
  • (1) and (±)-allo-enduracididine (3) reported by Du Bois et al. arose from the methodology for the conversion of alkenes to diamines via a cyclic sulfonamide intermediate using rhodium catalysis (Scheme 9) [63]. The reaction proceeds with formation of an intermediate aziridine 53 which rearranges upon
  • addition of sodium iodide to afford the desired cyclic sulfonamide 54. For the synthesis of (±)-enduracididine (1) and (±)-allo-enduracididine (3), protected (±)-allylglycine 55 was treated with BocNHS(O)2NH2, MgO, Rh2(esp)2 and PhI(OAc)2 in isopropyl acetate followed by sodium iodide to afford cyclic
  • sulfonamide 56 in 56% yield as a 1:1 mixture of diastereomers (Scheme 10). Selective deprotection of the sulfonamide Boc group allowed separation of diastereomers 57 and 58 via chromatography which were then converted to Tces (2,2,2-trichloroethoxysulfonyl) protected guanidines 59 and 60. Global deprotection
PDF
Album
Review
Published 07 Nov 2016

Chiral cyclopentadienylruthenium sulfoxide catalysts for asymmetric redox bicycloisomerization

  • Barry M. Trost,
  • Michael C. Ryan and
  • Meera Rao

Beilstein J. Org. Chem. 2016, 12, 1136–1152, doi:10.3762/bjoc.12.110

Graphical Abstract
  • asymmetric redox bicycloisomerization of 1,6- and 1,7-enynes. This complex was used to synthesize a broad array of [3.1.0] and [4.1.0] bicycles. Sulfonamide- and phosphoramidate-containing products could be deprotected under reducing conditions. Catalysis performed with enantiomerically enriched propargyl
  • steps. Heterocycle 7 is a bench stable white powder that can be stored indefinitely in a dessicator without any noticeable decomposition. The sulfonamide moiety activates sulfur towards nucleophilic addition, making the first addition of an organometallic reagent faster than the second. By performing
  • decided to initiate our efforts on 1,7-enyne sulfonamide 13 for reaction optimization. Table 1 showcases our initial experiments. With 3 mol % of CpRu-sulfoxide catalyst 1 in THF at 40 °C, 14 could be obtained in a 69% yield and a promising 26.5:73.5 er (Table 1, entry 1). This important first experiment
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2016

Catalytic asymmetric synthesis of biologically important 3-hydroxyoxindoles: an update

  • Bin Yu,
  • Hui Xing,
  • De-Quan Yu and
  • Hong-Min Liu

Beilstein J. Org. Chem. 2016, 12, 1000–1039, doi:10.3762/bjoc.12.98

Graphical Abstract
  • to the total synthesis of natural TMC-95A. In 2015, Yang and co-workers reported α-amino acid sulfonamide (cat. 7)-catalyzed aldol reactions of ketones with isatins under neat conditions (Scheme 20) [36]. Interestingly, the reactions proceeded smoothly, giving the desired products in high yields (up
PDF
Album
Review
Published 18 May 2016

The synthesis of functionalized bridged polycycles via C–H bond insertion

  • Jiun-Le Shih,
  • Po-An Chen and
  • Jeremy A. May

Beilstein J. Org. Chem. 2016, 12, 985–999, doi:10.3762/bjoc.12.97

Graphical Abstract
  • generated the tosylamine-bridged bicycle 51. The aminal in 51 could be transformed to a methyl hemiaminal, and then later a second C–H bond insertion by another nitrene targeted the less activated C–H bond to form the ring-fused piperidine 52. Thus, the pendant sulfonamide acted as a tool for multiple
PDF
Album
Review
Published 17 May 2016

1H-Imidazol-4(5H)-ones and thiazol-4(5H)-ones as emerging pronucleophiles in asymmetric catalysis

  • Antonia Mielgo and
  • Claudio Palomo

Beilstein J. Org. Chem. 2016, 12, 918–936, doi:10.3762/bjoc.12.90

Graphical Abstract
  • catalytic cycle, while providing the final product VIII. The authors propose a bifunctional behavior of the catalyst, wherein a hydrogen bonding interaction between the sulfonamide N–H and the thiazolone enolate controls its addition to the C–C double bond, which is the key step for asymmetric induction
PDF
Album
Review
Published 09 May 2016

Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

  • M. Fernanda N. N. Carvalho,
  • M. João Ferreira,
  • Ana S. O. Knittel,
  • Maria da Conceição Oliveira,
  • João Costa Pessoa,
  • Rudolf Herrmann and
  • Gabriele Wagner

Beilstein J. Org. Chem. 2016, 12, 732–744, doi:10.3762/bjoc.12.73

Graphical Abstract
  • decarboxylation reaction (azomethine ylides 7 and ene-sulfonamide 8). Figure 11 shows the structures and relative energies of geometry-optimized isomeric primary products 7 and 8, as well as their tautomeric products 9, 10 and 11 containing the newly formed C–H bonds. These secondary isomers are considerably more
  • of water is necessary for this step. 2. The fastest tautomerization in the reaction mixture occurs between 7a and 8 (the ene-sulfonamide). The low barriers (8.4 and 10.6 kcal/mol) should allow the equilibrium to be established rapidly. On the other hand, there is no possibility of proton transfer
  • system as in ninhydrin. The resulting intermediates, azomethine ylides or ene-sulfonamide, undergo water-catalyzed tautomerization reactions followed by hydrolysis of the C=N bonds to form amines with a new chiral center at the former C=O group of compound 1. The isolated compound 2 is derived from one
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2016

Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

  • José M. Andrés,
  • Miriam Ceballos,
  • Alicia Maestro,
  • Isabel Sanz and
  • Rafael Pedrosa

Beilstein J. Org. Chem. 2016, 12, 628–635, doi:10.3762/bjoc.12.61

Graphical Abstract
  • thiourea I [30] onto sulfonylpolystyrene resin leading to catalysts II–V (Figure 1), which differ in the length of the diamine linker or in the substitution pattern of the nitrogen in the sulfonamide. These materials, and the related unsupported thiourea VI, have been previously tested as excellent
  • conditions, supported catalyst V, which differs from IV in the substitution pattern of the sulfonamide, was the best catalyst for the addition of both 2a and 3a to nitrostyrene, yielding products 4aa and 5aa, respectively, in much better yield maintaining the stereoselectivity in shorter reaction time
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2016

The aminoindanol core as a key scaffold in bifunctional organocatalysts

  • Isaac G. Sonsona,
  • Eugenia Marqués-López and
  • Raquel P. Herrera

Beilstein J. Org. Chem. 2016, 12, 505–523, doi:10.3762/bjoc.12.50

Graphical Abstract
  • , the asymmetric Diels–Alder (D–A) reaction between the N-sulfonamide-3-hydroxy-2-pyridone-based dienes 52 and different dienophile substrates was developed using the bifunctional cis-2-trialkylaminoindanol organocatalyst ent-41 [56]. We show herein the reactivity of this family of dienes with several
PDF
Album
Review
Published 14 Mar 2016

Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

  • Brett N. Hemric and
  • Qiu Wang

Beilstein J. Org. Chem. 2016, 12, 22–28, doi:10.3762/bjoc.12.4

Graphical Abstract
  • of 1,2-oxyamino products. For example, most oxyamination methods are limited to the installation of amide or sulfonamide derivatives. The direct installation of electron-rich amino groups, especially tertiary cyclic amines, remains an unsolved problem. Furthermore, most methods employ inflexible
PDF
Album
Supp Info
Letter
Published 07 Jan 2016

Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

  • Kevin Lafaye,
  • Cyril Bosset,
  • Lionel Nicolas,
  • Amandine Guérinot and
  • Janine Cossy

Beilstein J. Org. Chem. 2015, 11, 2223–2241, doi:10.3762/bjoc.11.241

Graphical Abstract
  • -pyrido-diazocine 46 with an excellent yield of 94% (Scheme 18) [56]. The presence of the two sulfonamide substituents on the pyridyl ring might decrease the basicity of the nitrogen atom thus allowing the metathesis to proceed. Steric hindrance due to the C2 substitution may also prevent the pyridine
PDF
Album
Review
Published 18 Nov 2015

Recent advances in copper-catalyzed C–H bond amidation

  • Jie-Ping Wan and
  • Yanfeng Jing

Beilstein J. Org. Chem. 2015, 11, 2209–2222, doi:10.3762/bjoc.11.240

Graphical Abstract
  • depending on the properties of both aryl substrate and amide nucleophile (Scheme 10). It is worth to mention that Pan and co-workers recently disclosed N-fluorobenzene sulfonimides to be employed as the source of sulfonamide to enable the synthesis of N-heteroaryl sulfonimides via copper-catalyzed aryl C–H
  • catalytic protocol was later developed by Mizuno et al. [74] for the amidation of terminal alkynes using lactam, sulfonamide or cyclic carbamates. The application of Cu(OH)2 as heterogeneous catalyst allowed the synthesis of ynamides 77 with moderate to excellent yield under air (Scheme 20). A latest work
PDF
Album
Review
Published 17 Nov 2015

Profluorescent substrates for the screening of olefin metathesis catalysts

  • Raphael Reuter and
  • Thomas R. Ward

Beilstein J. Org. Chem. 2015, 11, 1886–1892, doi:10.3762/bjoc.11.203

Graphical Abstract
  • -methoxynaphthalene-1-sulfonamide moiety that is connected by an internal double bond to a 2,4-dinitroaniline core, acting as a fluorescence quencher [17]. Both the sulfonamide of the fluorophore and the aniline group of the quencher bear another allyl group. Upon relay ring-closing metathesis, the fluorophore and
  • was achieved relying on two converging synthons (Scheme 2). The fluorophore part of the molecule was synthesized starting from sodium 5-methoxynaphthalene-1-sulfonate (11), which was prepared according to a known procedure [25]. It was then transformed to the corresponding allyl sulfonamide 12 by
  • platereader was used. N-Allyl-5-methoxynaphthalene-1-sulfonamide (12). To a DMF solution (30 mL) of sodium 5-methoxynaphthalene-1-sulfonate (11, 1.30 g, 5.00 mmol, 1.00 equiv), cooled on an ice bath, thionyl chloride (1.09 mL, 15.0 mmol, 3.00 equiv) was added dropwise. After the complete addition, the ice
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2015

Recent applications of ring-rearrangement metathesis in organic synthesis

  • Sambasivarao Kotha,
  • Milind Meshram,
  • Priti Khedkar,
  • Shaibal Banerjee and
  • Deepak Deodhar

Beilstein J. Org. Chem. 2015, 11, 1833–1864, doi:10.3762/bjoc.11.199

Graphical Abstract
  • skeletally diverse bi-, and tricyclic sultam derivatives (sulfonamide analogs) using norbornenyl sultam 272 as a core unit assembled by an intramolecular Diels–Alder (IMDA) reaction via a domino ROM–RCM–CM cascade. Diversity has been incorporated by using various cross-metathesis partners (Scheme 56). Basso
PDF
Album
Review
Published 07 Oct 2015

Fates of imine intermediates in radical cyclizations of N-sulfonylindoles and ene-sulfonamides

  • Hanmo Zhang,
  • E. Ben Hay,
  • Stephen J. Geib and
  • Dennis P. Curran

Beilstein J. Org. Chem. 2015, 11, 1649–1655, doi:10.3762/bjoc.11.181

Graphical Abstract
  • -dihydropyrroles also presumably form spiro-imines as primary products. However, the lactam carbonyl group facilitates the ring-opening of these cyclic imines by a new pathway of hydration and retro-Claisen-type reaction, providing rearranged 2-(2'-formamidoethyl)oxindoles. Keywords: ene-sulfonamide; imine
  • the original substrates 1 by swapping the locations of the radical precursor (halide) and the radical acceptor (ene-sulfonamide). The expected products of these reactions, imines like 19, could possibly be used to make spirocyclic oxindole natural products like coerulescine [18], horsfiline [19][20
  • needed for the radical precursors was made in high yield as shown in Scheme 3. Vilsmeier–Haack formylation [25] of ene-sulfonamide 20 was followed by sodium chlorite oxidation [26] of the resulting aldehyde (90% yield over two steps). The radical precursors 22–24 were readily made in 54–69% yield by
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
  • sulfonamide derivative in preparing glycophane molecule (Scheme 6). Haley and Langsdorf [90] have reported the synthesis of a cyclophane-containing octacobalt complex 49 using the Glaser–Eglinton coupling reaction [91] as a key step (Scheme 7). In this regard, palladium-catalyzed alkynylation of 1,4
PDF
Album
Review
Published 29 Jul 2015

Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds

  • Gerold Heuger and
  • Richard Göttlich

Beilstein J. Org. Chem. 2015, 11, 1226–1234, doi:10.3762/bjoc.11.136

Graphical Abstract
  • as such electrophilic intermediates for an efficient intermolecular addition reaction. Addition reactions with N-alkyl-N-halosulfonamides to unsaturated compounds have not been examined in detail so far. In earlier works Komori added a secondary N-chloro-sulfonamide to 1-hexene under photoirridation
  • an N-alkyl substituent, which we anticipated to generate readily from the corresponding N-chloroamides by electron transfer from copper(I) catalysts. Results and Discussion The N-chlorosulfonamides can be easily prepared by reaction of the sulfonamide with calcium hypochlorite and moist alumina [34
  • better results whilst rising the temperature to 75 °C and adding an excess of styrene increased the yield to 43%. Under these conditions the N-chlorosulfonamide 2a was completely consumed, undesired products were the sulfonamide 1a as well as oligostyrenes. The oligomerisation should be slowed down by
PDF
Album
Full Research Paper
Published 21 Jul 2015

Azobenzene-based inhibitors of human carbonic anhydrase II

  • Leander Simon Runtsch,
  • David Michael Barber,
  • Peter Mayer,
  • Michael Groll,
  • Dirk Trauner and
  • Johannes Broichhagen

Beilstein J. Org. Chem. 2015, 11, 1129–1135, doi:10.3762/bjoc.11.127

Graphical Abstract
  • kinetics. Keywords: azobenzene chemistry; enzyme inhibitors; human carbonic anhydrase II; sulfonamide; X-ray crystallography; Introduction Carbonic anhydrase (CA) is an ubiquitously found zinc-containing metalloenzyme with many isoforms, which all catalyze the conversion of carbon dioxide and water to
  • (Figure 1b) [5]. Furthermore, sulfonamide-containing azobenzenes exhibit affinity and blocking ability for hCAII (Figure 1c) [6]. With our knowledge in azobenzene chemistry and photopharmacology, we aimed to further understand how electronic substitution patterns on azobenzenes correlate to changes in
  • ). Another commonly used method is the condensation between anilines and aryl nitroso compounds, known as the Mills reaction. According to these transformations, nine sulfonamide containing azobenzenes 1a–i with different moieties in the 4´-position were synthesized. The substitution in the 4´-position will
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2015

Novel stereocontrolled syntheses of tashiromine and epitashiromine

  • Loránd Kiss,
  • Enikő Forró and
  • Ferenc Fülöp

Beilstein J. Org. Chem. 2015, 11, 596–603, doi:10.3762/bjoc.11.66

Graphical Abstract
  • 1,3-dipolar cycloaddition and reduction [34] (Figure 3). (−)-Tashiromine has been accessed through the ring closure of difunctionalized acyclic chiral sulfonamide-based β-amino acids [35], the cyclization of pyrrole derivatives with a chiral side-chain [36], or the enantioselective arylation of
PDF
Album
Full Research Paper
Published 30 Apr 2015

Direct access to pyrido/pyrrolo[2,1-b]quinazolin-9(1H)-ones through silver-mediated intramolecular alkyne hydroamination reactions

  • Hengshuai Wang,
  • Shengchao Jiao,
  • Kerong Chen,
  • Xu Zhang,
  • Linxiang Zhao,
  • Dan Liu,
  • Yu Zhou and
  • Hong Liu

Beilstein J. Org. Chem. 2015, 11, 416–424, doi:10.3762/bjoc.11.47

Graphical Abstract
  • ), deoxyvasicinone was subjected to a free-radical bromination using NBS and the subsequent treatment with NaOAc/AcOH as an acetoxylation reagent [12]. However, for most of these synthetic strategies harsh reaction conditions are a necessity, produce unstable sulfonamide anhydride intermediates [2][13], which are
PDF
Album
Supp Info
Full Research Paper
Published 30 Mar 2015

Natural phenolic metabolites with anti-angiogenic properties – a review from the chemical point of view

  • Qiu Sun,
  • Jörg Heilmann and
  • Burkhard König

Beilstein J. Org. Chem. 2015, 11, 249–264, doi:10.3762/bjoc.11.28

Graphical Abstract
  • reported that 4-amino-2-sulfanylphenol derivatives display highly specific protein kinase and angiogenesis inhibitory activities. Based on their previous findings, the structure of compound 24 was optimized by replacing the naphthalene by a phenolic skeleton and a sulfonamide fragment [52]. These compounds
PDF
Album
Review
Published 16 Feb 2015

A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection

  • Stefanie Wolfram,
  • Hendryk Würfel,
  • Stefanie H. Habenicht,
  • Christine Lembke,
  • Phillipp Richter,
  • Eckhard Birckner,
  • Rainer Beckert and
  • Georg Pohnert

Beilstein J. Org. Chem. 2014, 10, 2470–2479, doi:10.3762/bjoc.10.258

Graphical Abstract
  • . For comparison, we also synthesized and tested a bromine modified dansyl derivative N-(3-azidopropyl)-6-bromo-5-(dimethylamino)naphthalene-1-sulfonamide (BNS, 6, Figure 2). Dansyl chloride is brominated according to the literature [30] to produce 6-bromo-5-(dimethylamino)naphthalene-1-sulfonyl
  • yield and compared it with other commercially available fluorophores of similar size (Figure 2). We chose N-(3-azidopropyl)-5-(dimethylamino)naphthalene-1-sulfonamide (DNS, 8) with a fluorophore system exhibiting a large stokes shift [1] suitable for fluorescence detection with UV filters
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2014

Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

  • Thilo Focken and
  • Stephen Hanessian

Beilstein J. Org. Chem. 2014, 10, 1848–1877, doi:10.3762/bjoc.10.195

Graphical Abstract
  • converted to the corresponding sulfonamide with para-methoxyphenyl (PMP) sulfonyl chloride. Cleavage of the silyl ether moiety with TBAF gave primary alcohol 143, which was oxidized to the corresponding acid 144 by a two-step protocol consisting of treatment with Dess–Martin periodinane followed by Pinnick
PDF
Album
Review
Published 13 Aug 2014

Atherton–Todd reaction: mechanism, scope and applications

  • Stéphanie S. Le Corre,
  • Mathieu Berchel,
  • Hélène Couthon-Gourvès,
  • Jean-Pierre Haelters and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2014, 10, 1166–1196, doi:10.3762/bjoc.10.117

Graphical Abstract
  • must be activated as a sulfonamide (or acetamide) to produce the expected phosphoramidate [42]. The authors, who used a phase-transfer agent, postulated that this activation resulted from the increase of the acidity of the N–H bond despite the evident reduction of the nucleophilic character (Scheme 14
PDF
Album
Review
Published 21 May 2014
Other Beilstein-Institut Open Science Activities