Search results

Search for "triazoles" in Full Text gives 139 result(s) in Beilstein Journal of Organic Chemistry.

In water multicomponent synthesis of low-molecular-mass 4,7-dihydrotetrazolo[1,5-a]pyrimidines

  • Irina G. Tkachenko,
  • Sergey A. Komykhov,
  • Vladimir I. Musatov,
  • Svitlana V. Shishkina,
  • Viktoriya V. Dyakonenko,
  • Vladimir N. Shvets,
  • Mikhail V. Diachkov,
  • Valentyn A. Chebanov and
  • Sergey M. Desenko

Beilstein J. Org. Chem. 2019, 15, 2390–2397, doi:10.3762/bjoc.15.231

Graphical Abstract
  • accessible by variation of the binucleophilic component 1 (instead of 1, 3-amino-1,2,4-triazole, 2-aminobenzimidazole, 3-aminopyrazoles, 4-amino-1,2,3-triazoles, etc. can be used [13]). However, a relatively low reactivity of amine 1 due to the electron deficiency of the tetrazole ring has been reported
PDF
Album
Supp Info
Full Research Paper
Published 08 Oct 2019

Thermal stability of N-heterocycle-stabilized iodanes – a systematic investigation

  • Andreas Boelke,
  • Yulia A. Vlasenko,
  • Mekhman S. Yusubov,
  • Boris J. Nachtsheim and
  • Pavel S. Postnikov

Beilstein J. Org. Chem. 2019, 15, 2311–2318, doi:10.3762/bjoc.15.223

Graphical Abstract
  • high Tpeak but also higher ΔHdec values for the latter ones. NHIs bearing N-heterocycles with a high N/C-ratio such as triazoles show among the lowest Tpeak and the highest ΔHdec values. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal
  • decomposition enthalpy. If the triazole is connected to the iodoarene via N1 as in 5, Tpeak decreases and ΔHdec increases. It should be concluded that triazole 4 has the most advantageous decomposition behavior: It is thermally the most stable among the pseudocyclic triazoles with the lowest ΔHdec value
  • . However, even the triazoles 2, 3, and 5 can be considered as safe compounds, but still deserve a common precaution due to the narrow decomposition process. Pyrazoles 6 and 7 are thermally more stable (Tpeak = 168.9 and 196.5 °C) with a remarkably lower ΔHdec value. NH-pyrazole 6 shows the lowest ΔHdec
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2019

Click chemistry towards thermally reversible photochromic 4,5-bisthiazolyl-1,2,3-triazoles

  • Chenxia Zhang,
  • Kaori Morinaka,
  • Mahmut Kose,
  • Takashi Ubukata and
  • Yasushi Yokoyama

Beilstein J. Org. Chem. 2019, 15, 2161–2169, doi:10.3762/bjoc.15.213

Graphical Abstract
  • , Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey 10.3762/bjoc.15.213 Abstract Three new diarylethenes were synthesized from 1,2-bis(5-methyl-2-(4-substituted-phenyl)thiazol-4-yl)ethyne and benzyl azide through Ru(I)-catalyzed Huisgen cyclization reactions. The 4,5-bisthiazolyl-1,2,3-triazoles
  • copper acetylide as the intermediate [15][17], resulting in the formation of 1,4-disubstituted triazoles. In contrast, when Ru(I) complexes are employed as the catalyst, the reaction mechanism is different from the case of Cu(I), and the major products are 1,5-disubstituted triazoles. Another more
  • important difference is that Ru(I) catalysts work on the disubstituted alkynes to give 1,4,5-trisubstituted triazoles (Scheme 1) [18][19]. When both substituents of an internal alkyne are aromatic groups, the triazoles thus formed include the hexatriene motif in the structure. Although a number of
PDF
Album
Supp Info
Letter
Published 13 Sep 2019

1,2,3-Triazolium macrocycles in supramolecular chemistry

  • Mastaneh Safarnejad Shad,
  • Pulikkal Veettil Santhini and
  • Wim Dehaen

Beilstein J. Org. Chem. 2019, 15, 2142–2155, doi:10.3762/bjoc.15.211

Graphical Abstract
  • macrocycles and focus on their application in different areas of supramolecular chemistry. The synthesis is mostly relying on the well-known “click reaction” (CuAAC) leading to 1,4-disubstituted 1,2,3-triazoles that then can be quaternized. Applications of triazolium macrocycles thus prepared include
  • polymers etc. [14][15]. Noncovalent interactions play a dynamic role in the binding mechanism of triazoles as macrocyclic receptors. It has been reported that the combined effects of both an electron lone pair on the nitrogen of the heterocycle and the acidic C5–H proton make 1,2,3-triazoles interesting
  • (iodine, bromine) and chalcogens (selenium and tellurium) [18]. While there are several strategies for the synthesis of triazoles, the Cu(II)-catalyzed azide–alkyne cycloaddition reaction (CuAAC click reaction) is considered as one of the most efficient, simple and mild approaches towards the preparation
PDF
Album
Review
Published 12 Sep 2019

Vicinal difunctionalization of alkenes by four-component radical cascade reaction of xanthogenates, alkenes, CO, and sulfonyl oxime ethers

  • Shuhei Sumino,
  • Takahide Fukuyama,
  • Mika Sasano,
  • Ilhyong Ryu,
  • Antoine Jacquet,
  • Frédéric Robert and
  • Yannick Landais

Beilstein J. Org. Chem. 2019, 15, 1822–1828, doi:10.3762/bjoc.15.176

Graphical Abstract
  • functionalized keto-aldehydes [22], aminoalcohols [30], triazoles [31], just to name a few. A reaction mechanism is finally proposed for the four-component cascade reaction, which is depicted in Figure 2 [22][23][24][32][33][34]. Initially, α-carbonyl radical A [8] was generated by the reaction of the
PDF
Album
Supp Info
Letter
Published 31 Jul 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • aromatic or aliphatic, only in case of triazoles substituted with an acetate group the final product was obtained in 66% yield. An open-flask, one-pot, Cu(II)-catalyzed ligand-free approach towards C–N bond formation was reported by Rasheed et al. [116]. The reaction was catalyzed by Cu(OAc)2 with cesium
PDF
Album
Review
Published 19 Jul 2019

Synthesis and fluorescent properties of N(9)-alkylated 2-amino-6-triazolylpurines and 7-deazapurines

  • Andrejs Šišuļins,
  • Jonas Bucevičius,
  • Yu-Ting Tseng,
  • Irina Novosjolova,
  • Kaspars Traskovskis,
  • Ērika Bizdēna,
  • Huan-Tsung Chang,
  • Sigitas Tumkevičius and
  • Māris Turks

Beilstein J. Org. Chem. 2019, 15, 474–489, doi:10.3762/bjoc.15.41

Graphical Abstract
  • →4) followed by a SNAr process (4→5) which showcases the use of 1,2,3-triazoles as leaving groups. It is well established during our previous research in the purine nucleoside series that such an approach provides 6-amino-2-(1,2,3-triazol-1-yl) derivatives [25]. On the other hand, it was also
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2019

Copper(I)-catalyzed tandem reaction: synthesis of 1,4-disubstituted 1,2,3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and alkynes

  • Muhammad Israr,
  • Changqing Ye,
  • Munira Taj Muhammad,
  • Yajun Li and
  • Hongli Bao

Beilstein J. Org. Chem. 2018, 14, 2916–2922, doi:10.3762/bjoc.14.270

Graphical Abstract
  • Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China University of Chinese academy of Science (UCAS), Beijing 100190, P. R. China 10.3762/bjoc.14.270 Abstract A copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles
  • , making this protocol operationally simple. The Cu(I) catalyst not only participates in the alkyl diacyl peroxides decomposition to afford alkyl azides but also catalyzes the subsequent CuAAC reaction to produce the 1,2,3-triazoles. Keywords: alkyl diacyl peroxides; azidotrimethylsilane; click reaction
  • ; copper catalysis; radical; 1,2,3-triazoles; Introduction The “click chemistry”, coined by K. B. Sharpless in 2001 [1], is a powerful chemical transformation that has rapidly orthogonalized traditional disciplinary boundaries. With the discovery of “click chemistry”, new fields have been opened for the
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2018

Assembly of fully substituted triazolochromenes via a novel multicomponent reaction or mechanochemical synthesis

  • Robby Vroemans,
  • Yenthel Verhaegen,
  • My Tran Thi Dieu and
  • Wim Dehaen

Beilstein J. Org. Chem. 2018, 14, 2689–2697, doi:10.3762/bjoc.14.246

Graphical Abstract
  • -triazoles [25][26][27][28][29][30][31]. Yet, the developed methodologies for trisubstituted triazolochromenes generally lack a substituent on the 2-position, except for a sporadic methyl group which drastically lowers the yield and often the use of transition metals is needed [28]. The additional
  • cycloaddition reaction on the synthesis of NH-triazoles by Guan et al. using p-toluenesulfonic acid as the catalyst in DMF [19], but with benzyl azide (4a) instead of sodium azide (Scheme 1). Our initial test gave a promising result, since after a reaction time of five days for the cycloaddition step the
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide

  • Lu Yang,
  • Yuwei Wu,
  • Yiming Yang,
  • Chengping Wen and
  • Jie-Ping Wan

Beilstein J. Org. Chem. 2018, 14, 2348–2353, doi:10.3762/bjoc.14.210

Graphical Abstract
  • synthesis of 4-acyl-NH-1,2,3-triazoles has been accomplished with high efficiency through the cycloaddition reactions between N,N-dimethylenaminones and tosyl azide. This method is featured with extraordinary sustainability by employing water as the sole medium, free of any catalyst or additive
  • numerous organic compounds [24][25][26][27][28]. The amazingly rapid and broad permeation of 1,2,3-triazoles to multidisciplinary areas can majorly be attributed to the occurrence of robust synthetic methods toward this heterocycle. The copper-catalyzed click [3 + 2] cycloaddition of azides and alkynes [29
  • ][30][31][32], for example, has served enormously to the advances in both the preparation and application of 1,2,3-triazoles. In addition, the discovery of other metal-catalyzed alkyne–azide cycloadditions (MAAC) providing 1,2,3-triazoles with diverse substitution patterns triggers the continuous
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2018

Revisiting ring-degenerate rearrangements of 1-substituted-4-imino-1,2,3-triazoles

  • James T. Fletcher,
  • Matthew D. Hanson,
  • Joseph A. Christensen and
  • Eric M. Villa

Beilstein J. Org. Chem. 2018, 14, 2098–2105, doi:10.3762/bjoc.14.184

Graphical Abstract
  • and bioactive molecules, but depending on the substituent identity, it can be inherently unstable due to Dimroth rearrangements. This study examined parameters governing the ring-degenerate rearrangement reactions of 1-substituted-4-imino-1,2,3-triazoles, expanding on trends first observed by L’abbé
  • -containing molecules have also recently been shown to be useful synthons for preparing compounds with anticancer [33] and antituberculosis [34] properties. 1-Substituted-4-imino-1,2,3-triazole analogs are typically prepared from efficient condensation reactions of 1-substituted-4-formyl-1,2,3-triazoles
  • -1,2,3-triazoles through a sequence of condensation, rearrangement and hydrolysis steps [42]. While this approach has found recent utility in preparing novel multidentate iminotriazole-based chelators [30][31][32], investigations exploring the parameters governing this rearrangement in greater detail
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2018

Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis

  • Gwendal Grelier,
  • Benjamin Darses and
  • Philippe Dauban

Beilstein J. Org. Chem. 2018, 14, 1508–1528, doi:10.3762/bjoc.14.128

Graphical Abstract
  • -dimethylpyrazole. The reaction has been extended to 1,2,3-triazoles, benzotriazole, and pyrazole. In the latter case, the use of (styryl)(aryl)-λ3-iodanes has also proved to be possible, with the styryl moiety being selectively transferred in the first step. The following step of C–H activation then gives access
PDF
Album
Review
Published 21 Jun 2018

[3 + 2]-Cycloaddition reaction of sydnones with alkynes

  • Veronika Hladíková,
  • Jiří Váňa and
  • Jiří Hanusek

Beilstein J. Org. Chem. 2018, 14, 1317–1348, doi:10.3762/bjoc.14.113

Graphical Abstract
  • (Scheme 6). A similar experiment was performed by Ohta et al. [60] five years later who irradiated single 3,4-diphenylsydnones and obtained the corresponding 2,4,5-triphenyl-1,2,3-triazoles in 21–24% yields (first misinterpreted as 1,3-diphenyldiazirine [61]). In the same year Angadiyavar and George [62
PDF
Album
Review
Published 05 Jun 2018

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • atom-economical biphenylation of N-heterocycles was developed [33]. This method involved a direct N-arylation of pyrazoles or triazoles 12 under basic conditions, followed by a ruthenium-catalysed C–H arylation with the emerging aryl iodide (Scheme 8). Due to the fact that the first step of this
PDF
Album
Review
Published 30 May 2018

Sequential Ugi reaction/base-induced ring closing/IAAC protocol toward triazolobenzodiazepine-fused diketopiperazines and hydantoins

  • Robby Vroemans,
  • Fante Bamba,
  • Jonas Winters,
  • Joice Thomas,
  • Jeroen Jacobs,
  • Luc Van Meervelt,
  • Jubi John and
  • Wim Dehaen

Beilstein J. Org. Chem. 2018, 14, 626–633, doi:10.3762/bjoc.14.49

Graphical Abstract
  • of biological activities [56][57][58]. Owing to our interest in the chemistry of 1,2,3-triazoles [59][60][61][62][63][64][65][66][67][68][69][70][71][72] and the interesting biological activities of benzodiazepines and 2,5-diketopiperazines, we were motivated to develop a facile route towards
PDF
Album
Supp Info
Full Research Paper
Published 14 Mar 2018

Continuous multistep synthesis of 2-(azidomethyl)oxazoles

  • Thaís A. Rossa,
  • Nícolas S. Suveges,
  • Marcus M. Sá,
  • David Cantillo and
  • C. Oliver Kappe

Beilstein J. Org. Chem. 2018, 14, 506–514, doi:10.3762/bjoc.14.36

Graphical Abstract
  • 1,4-disubstituted triazoles 8 through click reaction between 2-azidomethyl-4,5-diaryloxazoles and alkynes in the presence of a copper(I) catalyst (Scheme 2). The authors were able to synthesize an array of small-molecule peptidomimetics that inhibited Porphyromonas gingivalis biofilm formation [34
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2018

Carbohydrate inhibitors of cholera toxin

  • Vajinder Kumar and
  • W. Bruce Turnbull

Beilstein J. Org. Chem. 2018, 14, 484–498, doi:10.3762/bjoc.14.34

Graphical Abstract
  • = amino acid residues, aminoalkyl, 1,2,3 triazoles; n = 1, 2; R = H, Me, R' = OH, NHAc. Bivalent inhibitor designed and synthesised by Pickens et al. Bivalent inhibitor designed and synthesized by Arosio et al. Bivalent inhibitors designed and synthesised by Leaver and Liu. Bivalent and tetravalent
PDF
Album
Review
Published 21 Feb 2018

Syn-selective silicon Mukaiyama-type aldol reactions of (pentafluoro-λ6-sulfanyl)acetic acid esters with aldehydes

  • Anna-Lena Dreier,
  • Andrej V. Matsnev,
  • Joseph S. Thrasher and
  • Günter Haufe

Beilstein J. Org. Chem. 2018, 14, 373–380, doi:10.3762/bjoc.14.25

Graphical Abstract
  • [22]. There are not many transformations of aliphatic SF5 compounds described in the literature. Among them are the preparation and derivatization of SF5-aldehydes [23], Diels–Alder reactions [24][25][26], the “click reaction” of SF5-acetylenes with azides to form triazoles [27], and 1,3-dipolar
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2018

Recent applications of click chemistry for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles

  • Vivek Poonthiyil,
  • Thisbe K. Lindhorst,
  • Vladimir B. Golovko and
  • Antony J. Fairbanks

Beilstein J. Org. Chem. 2018, 14, 11–24, doi:10.3762/bjoc.14.2

Graphical Abstract
  • conversion of the azides to triazoles. However, significant particle decomposition and/or aggregation were observed when the AuNPs were heated for more than 15 minutes in the microwave reactor. Astruc and co-workers reported several modifications to try and increase the efficiency of CuAAC reactions of AuNPs
PDF
Album
Supp Info
Review
Published 03 Jan 2018

Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

  • Matthias Wünsch,
  • David Schröder,
  • Tanja Fröhr,
  • Lisa Teichmann,
  • Sebastian Hedwig,
  • Nils Janson,
  • Clara Belu,
  • Jasmin Simon,
  • Shari Heidemeyer,
  • Philipp Holtkamp,
  • Jens Rudlof,
  • Lennard Klemme,
  • Alessa Hinzmann,
  • Beate Neumann,
  • Hans-Georg Stammler and
  • Norbert Sewald

Beilstein J. Org. Chem. 2017, 13, 2428–2441, doi:10.3762/bjoc.13.240

Graphical Abstract
  • substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional
  • , these propargylamines have been frequently used as precursors for the synthesis of diverse bioactive compounds. Their conversion into triazoles is best investigated, since triazoles as amide bond surrogates are found in several inhibitors of proteases such as cathepsin S [1][2][3][4][5][6], cysteine
  • (monitored by 1H NMR spectroscopy, see Supporting Information File 1). Formation of triazoles 13w and 14w was unexpected, because the uncatalyzed Huisgen reaction usually requires higher temperature or activation by electron-withdrawing substituents at the alkyne or electron-donating substituents at the
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2017

Synthesis, effect of substituents on the regiochemistry and equilibrium studies of tetrazolo[1,5-a]pyrimidine/2-azidopyrimidines

  • Elisandra Scapin,
  • Paulo R. S. Salbego,
  • Caroline R. Bender,
  • Alexandre R. Meyer,
  • Anderson B. Pagliari,
  • Tainára Orlando,
  • Geórgia C. Zimmer,
  • Clarissa P. Frizzo,
  • Helio G. Bonacorso,
  • Nilo Zanatta and
  • Marcos A. P. Martins

Beilstein J. Org. Chem. 2017, 13, 2396–2407, doi:10.3762/bjoc.13.237

Graphical Abstract
  • reaction conditions and short reaction times, the advantage of CuAAC is the formation of 1,2,3-triazoles-1,4-disubstituted in a highly regioselective manner [41]. Recently, Cornec et al. [44] synthesized 4,6-dimethyl-2-(4-aryl-1H-1,2,3-triazol-1-yl)pyrimidines from azides using copper salts. The reaction
  • involved the in situ reduction of the Cu(II) salt by sodium ascorbate. The reactions in this study were performed from the 1,3-dipoloar cycloaddition reaction catalyzed by Cu(I) [44] and the 1,4-disubstituted 1,2,3-triazoles 8a–c were acquired in excellent yields (Table 4). Although only compounds 6a–c
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2017

Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole

  • Martina Tireli,
  • Silvija Maračić,
  • Stipe Lukin,
  • Marina Juribašić Kulcsár,
  • Dijana Žilić,
  • Mario Cetina,
  • Ivan Halasz,
  • Silvana Raić-Malić and
  • Krunoslav Užarević

Beilstein J. Org. Chem. 2017, 13, 2352–2363, doi:10.3762/bjoc.13.232

Graphical Abstract
  • an efficient regioselective generation of 1,4-disubstituted 1,2,3-triazoles [1][2][3]. After their discovery [1], click reactions affording 1,2,3-triazoles rapidly became important for simple and robust binding of versatile molecules and for the building of stable polymer structures [4]. At the same
  • time, the 1,2,3-triazoles became the heterocycle of choice in drug discovery, due to their favourable pharmacokinetic and safety profiles, hydrogen-bonding capability, moderate dipole moment, rigidity and stability under in vivo conditions [5][6]. Also, the ability of 1,2,3-triazoles to act as amide
  • -aminobiphenyl (1) with ethyl 4,4,4-trifluoro-3-oxobutanoate in polyphosphoric acid (PPA) followed by the cyclization of the Schiff base intermediate afforded the 2-(trifluoromethyl)-6-phenylquinolone 3 (Scheme 1). O-Alkynylquinoline derivative 4 required for the click synthesis of target triazoles was obtained
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2017

Mechanochemical synthesis of small organic molecules

  • Tapas Kumar Achar,
  • Anima Bose and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2017, 13, 1907–1931, doi:10.3762/bjoc.13.186

Graphical Abstract
  • -Triazoles have important applications in pharmaceutical chemistry [150] and traditionally they are prepared by 1,3-dipolar cycloaddition reactions at high temperature, long reaction times and produce low yield with multiple products [151]. In 2013, Ranu and co-workers reported mechanochemical synthesis of
  • triazole moiety (Scheme 37a) using benzyl halides, sodium azide and a terminal alkyne via an alumina-supported copper catalyst. Using 10 mol % of Cu/Al2O3, differently substituted phenyl acetylenes and aliphatic alkynes led to 70–96% yield of triazoles [152]. Phenyl boronic acids were also used to
PDF
Album
Review
Published 11 Sep 2017

The chemistry and biology of mycolactones

  • Matthias Gehringer and
  • Karl-Heinz Altmann

Beilstein J. Org. Chem. 2017, 13, 1596–1660, doi:10.3762/bjoc.13.159

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2017

New tricks of well-known aminoazoles in isocyanide-based multicomponent reactions and antibacterial activity of the compounds synthesized

  • Maryna V. Murlykina,
  • Maryna N. Kornet,
  • Sergey M. Desenko,
  • Svetlana V. Shishkina,
  • Oleg V. Shishkin,
  • Aleksander A. Brazhko,
  • Vladimir I. Musatov,
  • Erik V. Van der Eycken and
  • Valentin A. Chebanov

Beilstein J. Org. Chem. 2017, 13, 1050–1063, doi:10.3762/bjoc.13.104

Graphical Abstract
  • cyclizations [69][70]. There are examples of using aminoazoles as an amine component in GBB-3CR (Scheme 1). They mostly involve different substituted 3-amino-1,2,4-triazoles [71][72][73][74][75] and 2-amino(benzo)thiazoles [71][72][76][77][78][79][80][81][82][83][84][85][86][87][88]. Several publications deal
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2017
Other Beilstein-Institut Open Science Activities