Search results

Search for "DDQ" in Full Text gives 152 result(s) in Beilstein Journal of Organic Chemistry.

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • , as well as aliphatic chains. Unsurprisingly, esters and other base labile groups are not encountered. A recent publication by König and his group shows the DDQ catalysed (3DDQ Ered*(cat/cat•−) ≈ +3.18 V vs SCE) C–H amination of arenes and heteroarenes using weakly nucleophilic species such as
  • ). The reaction uses 2H-azirines and aldehydes to access the functionalised heterocycles [61]. Unlike the pyrrole-forming reaction, this protocol requires an oxidising agent, DDQ, for the desired oxazole to be obtained. This means that access to the corresponding 2,5-oxazolines is also possible
PDF
Album
Review
Published 03 Aug 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • ]. Firstly, dichloride 41 was reduced with LiAlH4 in ether to give the monochloride 42. The reaction of 42 with DDQ produced 4,5-benzotropone (11) in 24% yield together with 28% of starting material. The key step for 11 from 42 is the electrocyclic ring expansion of dehydrogenation product 44 to the
  • -benzotropone (11) with dimethyl barbituric acid (62) and subsequent oxidative cyclization reaction using DDQ-Sc(OTf)3 or photoirradiation under aerobic conditions afforded 61+.BF4− (Scheme 12). The pKR+ value and reduction potential of the cation 61 were studied. The relative stability of a carbocation can be
  • toward alcohols of 61+.BF4− in the auto-recycling process was also reported. However, to test the reactivity, the reactions of 61+.BF4− with a nucleophile such as NaBH4, diethylamine, and methanol were carried out to afford 7-adducts 64–66. Compound 64 was oxidized by DDQ to regenerate 61+.BF4− in good
PDF
Album
Review
Published 23 May 2018

Synthetic avenues towards a tetrasaccharide related to Streptococcus pneumonia of serotype 6A

  • Aritra Chaudhury,
  • Mana Mohan Mukherjee and
  • Rina Ghosh

Beilstein J. Org. Chem. 2018, 14, 1095–1102, doi:10.3762/bjoc.14.95

Graphical Abstract
  • ), was deacetylated quantitatively in the presence of Et3N/MeOH/H2O [35], and then stannylene-mediated selective naphthylmethylation at the O-3 position was carried out to give the known derivative 15 in 82% yield [36]. This was next benzoylated almost quantitatively to give 16. Finally DDQ-mediated
  • 93% yield. Subsequent deprotection of isopropylidene ketal with pTSA/MeOH (aq) and then benzylation furnished 20 in 95% yield over two steps. Deprotection of the naphthylmethyl group in the presence of DDQ in aqueous dichloromethane (19:1) gave the glycosyl acceptor 7 [22] in 85% yield (Scheme 3). In
  • -side of the ring. Having obtained the central disaccharide 3a in requisite yield and excellent stereochemical purity we now proceeded towards the synthesis of the trisaccharide fragment 21 (Scheme 4). Compound 3a was treated with DDQ in dichloromethane to remove the 3-O-Nap protection group generating
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2018

Selective carboxylation of reactive benzylic C–H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system

  • Toshifumi Dohi,
  • Shohei Ueda,
  • Kosuke Iwasaki,
  • Yusuke Tsunoda,
  • Koji Morimoto and
  • Yasuyuki Kita

Beilstein J. Org. Chem. 2018, 14, 1087–1094, doi:10.3762/bjoc.14.94

Graphical Abstract
  • benzylmethyl groups, and the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) [58] or catalytic tetrabutylammonium iodide with tert-butyl hydrogen peroxide for reactions with a large excess of aromatic hydrocarbons [59]. Other than these excellent examples of metal-free methods, two protocols using a
PDF
Album
Supp Info
Letter
Published 16 May 2018

An efficient and facile access to highly functionalized pyrrole derivatives

  • Meng Gao,
  • Wenting Zhao,
  • Hongyi Zhao,
  • Ziyun Lin,
  • Dongfeng Zhang and
  • Haihong Huang

Beilstein J. Org. Chem. 2018, 14, 884–890, doi:10.3762/bjoc.14.75

Graphical Abstract
  • complete oxidation with DDQ, has been successfully developed. Further transformation with alkylamine/sodium alkoxide alcohol solution conveniently afforded novel polysubstituted pyrroles in good to excellent yields. This methodology for highly functionalized pyrroles performed well over a broad scope of
  • cycloaddition of azomethine ylides with N-alkyl maleimide, followed by a facile oxidation using DDQ as oxidant. Further manipulation with alkylamine/sodium alkoxide alcohol solution conveniently led to novel polysubstituted pyrroles in good to excellent yields (Scheme 1). Results and Discussion As shown in
  • . Unfortunately, the desired pyrrole product 12a was obtained only in 41% yield with DDQ (4 equiv) as oxidant at room temperature for 48 h (Table 3, entry 1). As expected, toluene as solvent improved the reaction outcome to afford 12a in a good yield up to 71% (Table 3, entry 2). Subsequently, reducing the amount
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2018

Biocatalytic synthesis of the Green Note trans-2-hexenal in a continuous-flow microreactor

  • Morten M. C. H. van Schie,
  • Tiago Pedroso de Almeida,
  • Gabriele Laudadio,
  • Florian Tieves,
  • Elena Fernández-Fueyo,
  • Timothy Noël,
  • Isabel W. C. E. Arends and
  • Frank Hollmann

Beilstein J. Org. Chem. 2018, 14, 697–703, doi:10.3762/bjoc.14.58

Graphical Abstract
  • NMR (399 MHz, CDCl3) δ 9.44 (d, J = 7.7 Hz, 1H), 6.78 (dt, J = 15.6, 6.8 Hz, 1H), 6.05 (ddq, J = 15.5, 7.8, 1.3 Hz, 1H), 2.33–2.18 (m, 2H), 1.48 (h, J = 7.4 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 194.3, 158.9, 133.3, 34.8, 21.3, 13.8. Michaelis–Menten kinetics of the PeAAOx
PDF
Album
Supp Info
Letter
Published 26 Mar 2018

Functionalization of N-arylglycine esters: electrocatalytic access to C–C bonds mediated by n-Bu4NI

  • Mi-Hai Luo,
  • Yang-Ye Jiang,
  • Kun Xu,
  • Yong-Guo Liu,
  • Bao-Guo Sun and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2018, 14, 499–505, doi:10.3762/bjoc.14.35

Graphical Abstract
  • ]. Later on, arylation, vinylation and alkynylation of glycine derivatives were also accomplished by the same group (Scheme 1) [13]. Using the Cu(OAc)2/pyrrolidine dual catalysts system, Huang developed the oxidative cross coupling of glycine derivatives with acetone in the presence of TBHP or DDQ as
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • their aromatic counterparts 72 in presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in acetonitrile. Insuasty et al. [64] adapted a similar synthetic strategy for the construction of 4,7-dihydropyrazolo[3,4-b]pyridines 73 and pyrazolo[3,4-b]pyridines 74 by a three-component reaction of 5
PDF
Album
Review
Published 25 Jan 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • tetrahydroisoquinoline derivatives using DDQ and Ruppert–Prakash reagent (Scheme 31). A variety of amines proceeded smoothly to give the corresponding products in 15–90% yields under mild conditions. Based on previous literature, the author proposed a possible mechanism in Scheme 31. Firstly, oxidation of N-substituted
  • tetrahydroisoquinoline with DDQ generates dihydroquinoline salt A. Next, CuCF3, generated by the reaction of CuI and CF3TMS/KF, undergoes a nucleophilic addition with A affording the desired products and the copper salt. The generated copper salt would be reused to form CuCF3 in the nucleophilic step again. So, only a
PDF
Album
Review
Published 17 Jan 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
  • elimination byproducts under DCC–DMAP-promoted acylation conditions, a two-step procedure for the acylation of 3’-OH group was applied. Acylation with the (R)-3-(p-methoxy)benzyloxytetradecanoic acid was initially performed to provide 6, the (p-methoxy)benzyl ether was removed with DDQ and the liberated OH
  • . gingivalis lipid A 51. For the synthesis of pentaacyl lipid A 53, the 3’-O-p-methoxybenzyl group in 50 was cleaved by treatment with DDQ, and the liberated hydroxyl group was reacted with branched β-benzyloxy fatty acid to furnish fully acylated precursor 52. After the cleavage of the 1-O-allyl group, the
PDF
Album
Review
Published 04 Jan 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  • -workers reported the synthesis of trifluoromethylated coumarin 71 and flavone 72 with CF3SO2Na (2 equiv), the hypervalent iodine F5-PIFA (pentafluorophenyliodine bis(trifluoroacetate)) (2 equiv) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 0.6 equiv). The trifluoromethylated compounds were obtained
  • the direct trifluoromethylation of a wide variety of arenes and heteroarenes under visible-light irradiation [73]. The substrate scope was evaluated on 30 arenes and heteroarenes using 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) as photocatalyst and CF3SO2Na as the CF3 radical source. The reaction
PDF
Album
Full Research Paper
Published 19 Dec 2017

Preparation and isolation of isobenzofuran

  • Morten K. Peters and
  • Rainer Herges

Beilstein J. Org. Chem. 2017, 13, 2659–2662, doi:10.3762/bjoc.13.263

Graphical Abstract
  • ) and methylated to DMIBF (7) [8]. However, yields in our hands are quite low. It is known that benzyl ethers are prone to oxidative functionalization [20]. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has been used to selectively oxidize benzyl ethers to acetals in the presence of alcohols [21
  • ]. Following a procedure of Doyle et al. we reacted commercially available phthalan (8) with DDQ and methanol in dry dichloromethane under a nitrogen atmosphere at room temperature, and obtained DMIBF (7) with a yield of 85% (Scheme 2) [22]. DMIBF (7) was treated with freshly prepared lithium diisopropylamide
  • -Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 5.00 g, 22.0 mmol), dry dichloromethane (100 mL), methanol (900 μL, 22.2 mmol) and phthalan (8, 2.00 g, 16.7 mmol) were dissolved under a nitrogen atmosphere. The reaction mixture was stirred for 13 h at room temperature. The reaction was quenched with aq sodium
PDF
Album
Supp Info
Letter
Published 12 Dec 2017

One-pot syntheses of blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones by T3P® activation of 3-arylpropiolic acids

  • Melanie Denißen,
  • Alexander Kraus,
  • Guido J. Reiss and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2017, 13, 2340–2351, doi:10.3762/bjoc.13.231

Graphical Abstract
  • use of phenylpropiolic acid chloride and phenylpropiolic acid as starting materials [45], and as well oxidative arene–alkyne cyclization with dichloro-5,6-dicyano-benzoquinone (DDQ) [46]. Based upon our experience in using propylphosphonic acid anhydride (T3P®) [47] as a condensation agent for in situ
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2017

Intramolecular glycosylation

  • Xiao G. Jia and
  • Alexei V. Demchenko

Beilstein J. Org. Chem. 2017, 13, 2028–2048, doi:10.3762/bjoc.13.201

Graphical Abstract
  • by Ito and Ogawa who implemented DDQ-mediated oxidative transformation of the p-methoxybenzyl (PMB) protecting group at the C-2 position of the donor into a tethering mixed acetal with a hydroxy group of the acceptor [94]. The early studies have successfully applied this PMB-based IAD method to the
  • stereoselectivity. Thus, mixed acetal 76 can be readily formed in 2 h by the addition of DDQ to a mixture of donor 74 and acceptor 75. Without further purification, the latter mixture can be glycosylated in the presence of MeOTf and DTBMP followed by acetylation to give disaccharide 77 in an excellent yield of 90
PDF
Album
Review
Published 29 Sep 2017

Mechanochemical synthesis of small organic molecules

  • Tapas Kumar Achar,
  • Anima Bose and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2017, 13, 1907–1931, doi:10.3762/bjoc.13.186

Graphical Abstract
  •  11) using 2,3-dichloro-5,6-dicyanoquinone (DDQ) as an efficient oxidant [67]. Su and co-workers have also reported an asymmetric version of the CDC reaction between terminal alkynes and sp3 C–H bonds under high speed ball milling conditions [68]. Several optically active 1-alkynyl
  • tetrahydroisoquinoline derivatives were synthesized using a pyridine-based chiral ligand (PyBox, Scheme 12) in the presence of DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone). The coupling products were isolated in fair yields with ee’s (enantiomeric excesses) up to 79%. The milling copper balls were also identified as
  • reacting catalyst. Su and co-workers reported an Fe(III)-catalyzed coupling of 3-benzyl indoles with molecules having active methylene group under solvent-free ball-mill in presence of silica gel as milling auxiliary. Using 10 mol % Fe(NO3)3·9H2O as catalyst and 1.0 equiv of DDQ afforded good yield of
PDF
Album
Review
Published 11 Sep 2017

Oxidative dehydrogenation of C–C and C–N bonds: A convenient approach to access diverse (dihydro)heteroaromatic compounds

  • Santanu Hati,
  • Ulrike Holzgrabe and
  • Subhabrata Sen

Beilstein J. Org. Chem. 2017, 13, 1670–1692, doi:10.3762/bjoc.13.162

Graphical Abstract
  • -dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), KMnO4, transition metal-based oxidants and air have been extensively used to promote this transformation. o-Iodoxybenzoic acid (IBX)-mediated oxidative dehydrogenation IBX was first introduced as an oxidant (in oxidative dehydrogenation) by Nicolaou and co
  • were facilitated by iodine and DDQ-mediated oxidative dehydrogenation as depicted in Scheme 6 [37][38][39][40]. Typically, quinazolinone 25 was refluxed in the polar solvent ethanol with iodine to afford the dihydro derivative 26 (Scheme 6). Interestingly, DDQ facilitated similar reactions at room
  • temperature. DDQ also induced oxidative dehydrogenation in 2-thiazolidines 27 and 2-oxazolidines 28 at room temperature in the presence of 4 Å molecular sieves with dichloromethane as solvent to generate diversely substituted 2-thiazoles 29 and 2-oxazoles 30 (Scheme 7) [41]. The putative mechanism initiated
PDF
Album
Review
Published 15 Aug 2017

The chemistry and biology of mycolactones

  • Matthias Gehringer and
  • Karl-Heinz Altmann

Beilstein J. Org. Chem. 2017, 13, 1596–1660, doi:10.3762/bjoc.13.159

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2017

Total synthesis of elansolids B1 and B2

  • Liang-Liang Wang and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2017, 13, 1280–1287, doi:10.3762/bjoc.13.124

Graphical Abstract
  • iodide 17 after O-acylation, iodination of the terminal alkyne and finally diimide-mediated syn-reduction [11]. Next, DDQ-mediated removal of the PMB protecting group yielded vinyl iodide 18. The synthesis of both fragments 13 and 18 set the stage for the Suzuki–Miyaura coupling which delivered the
  • , 695.1837. Synthesis of vinyl iodide 18 DDQ (56.5 mg, 0.25 mmol, 3.0 equiv) was added to a stirred solution of 17 (55.8 mg, 0.083 mmol, 1.0 equiv) in CH2Cl2 (4.5 mL)/pH 7.0 phosphate buffer (0.45 mL) at 0 °C. After stirring for 1.5 h, the reaction mixture was terminated by addition of a saturated, aqueous
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2017

Total syntheses of the archazolids: an emerging class of novel anticancer drugs

  • Stephan Scheeff and
  • Dirk Menche

Beilstein J. Org. Chem. 2017, 13, 1085–1098, doi:10.3762/bjoc.13.108

Graphical Abstract
  • protection of the free alcohol and deprotection of the primary PMB-protected alcohol with DDQ, the resulting alcohol was oxidized to the corresponding aldehyde. The crude aldehyde was then directly transformed into the (Z)-α,β-unsaturated ester 62 as a single stereoisomer by a Still–Gennari [72] olefination
PDF
Album
Review
Published 07 Jun 2017

Synthesis of D-manno-heptulose via a cascade aldol/hemiketalization reaction

  • Yan Chen,
  • Xiaoman Wang,
  • Junchang Wang and
  • You Yang

Beilstein J. Org. Chem. 2017, 13, 795–799, doi:10.3762/bjoc.13.79

Graphical Abstract
  • , Scheme 4). In addition, a trace amount of the deacetylated product was also detected . DDQ-mediated oxidative cleavage of the PMB group in alcohol 14 produced only a moderate yield (≈50%) of the 5,7-diol probably due to the presence of the free 7-hydroxy group. We envisaged that protection of the free 7
  • -hydroxy group in 14 followed by treatment with DDQ could yield the desired 5-hydroxy product in high yield. Indeed, acetylation of alcohol 14 with acetic anhydride delivered ester 15 in 91% yield. Removal of the PMB group in 15 with DDQ resulted in a very clean reaction, affording alcohol 16 in an
PDF
Album
Supp Info
Letter
Published 28 Apr 2017

Synthesis of 1-indanones with a broad range of biological activity

  • Marika Turek,
  • Dorota Szczęsna,
  • Marek Koprowski and
  • Piotr Bałczewski

Beilstein J. Org. Chem. 2017, 13, 451–494, doi:10.3762/bjoc.13.48

Graphical Abstract
PDF
Album
Review
Published 09 Mar 2017

Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

  • Peter H. Seeberger,
  • Claney L. Pereira and
  • Subramanian Govindan

Beilstein J. Org. Chem. 2017, 13, 164–173, doi:10.3762/bjoc.13.19

Graphical Abstract
  • reducing to the non-reducing end (Scheme 8). Union of 4 and 5 (Scheme 7) produced disaccharide 41 as the key intermediate, the naphthyl protecting group of which was cleaved in 70% yield using DDQ [37] to afford 42. Thioglycoside 43 failed to react with disaccharide 42 to furnish the desired trisaccharide
  • activator proceeded to produce trisaccharide 44 in 65% yield. Removal of the C2 naphthyl ether using DDQ provided acceptor 45, which in turn was reacted with glucosyl thioglycoside 7 in the presence of NIS and TfOH to produce α-linked tetrasaccharide 46 in 62% yield (Scheme 8). At this stage, the 2
  • protected hexasaccharide 51. Reagents and conditions: (a) DDQ, CH2Cl2/MeOH (9:1), rt, 70%; (b) 43, NIS, TfOH, CH2Cl2, −20 °C (no reaction) or 6, TMSOTf, Et2O/CH2Cl2 (4:1), −20 °C (65%); (c) DDQ, CH2Cl2/MeOH (9:1), rt, 55%; (d) 7, TMSOTf, Et2O/CH2Cl2 (4:1), −20 °C, 62%; (e) NaOMe (0.5 M in MeOH), THF/MeOH (1
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2017

Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst

  • Pierre Querard,
  • Inna Perepichka,
  • Eli Zysman-Colman and
  • Chao-Jun Li

Beilstein J. Org. Chem. 2016, 12, 2636–2643, doi:10.3762/bjoc.12.260

Graphical Abstract
  • of THIQs with arylboronic esters via asymmetric organocatalysis methodology [25][28]. The use of chiral tartaric acid derivatives, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and high temperature (70 °C) were found to be the optimal conditions to obtain the desired arylated product with
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2016

Total synthesis of leopolic acid A, a natural 2,3-pyrrolidinedione with antimicrobial activity

  • Atul A. Dhavan,
  • Rahul D. Kaduskar,
  • Loana Musso,
  • Leonardo Scaglioni,
  • Piera Anna Martino and
  • Sabrina Dallavalle

Beilstein J. Org. Chem. 2016, 12, 1624–1628, doi:10.3762/bjoc.12.159

Graphical Abstract
  • cleavage with cerium ammonium nitrate (CAN) or 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ). Thus, 2,3-pyrrolidinedione 3 was obtained by the reaction of ethyl acrylate with p-methoxybenzylamine, followed by treatment with diethyl oxalate (Scheme 1) [12]. On the basis of NMR data, the compound exists as an
  • DIBAL-H gave the corresponding primary alcohol, which was converted into bromide 5 by Appel reaction with PPh3 and CBr4. The phosphonium salt obtained from this bromide was subjected to a Wittig reaction with nonanal, to afford compound 6 [12]. Attempts to remove the PMB protecting group (CAN, DDQ, TFA
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2016

Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(−)-myrtenol nitrate

  • Sean P. Bew,
  • Glyn D. Hiatt-Gipson,
  • Graham P. Mills and
  • Claire E. Reeves

Beilstein J. Org. Chem. 2016, 12, 1081–1095, doi:10.3762/bjoc.12.103

Graphical Abstract
  • bromide (56), we envisaged its subsequent deprotonation and addition to chloroacetone would afford (E)-1-((2-methyl-4-chlorobut-2-enyloxy)methyl)-4-methoxybenzene (57). Inclusion of the PMB-ether was beneficial due to the ease with which it can be cleaved using readily available reagents, e.g., DDQ or CAN
  • -methoxybenzyloxy)-3-methylbut-2-enyl nitrate (68% yield) as stable, colourless oils. Mild oxidative cleavage of the PMB groups using DDQ in wet DCM generated the desired 1° allylic alcohol (E)-3-methyl-4-hydroxybut-2-enyl nitrate ((E)-11) and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate ((Z)-12) in 62% and 53% yields
  • the moderate yield was not problematic as rac-68 and rac-69 were readily separable, allowing rac-68 to be recycled (based on recovered starting material the yield was almost quantitative). Oxidative O-PMB deprotection of rac-69 using DDQ in biphasic dichloromethane/water generated 1° alcohol (±)-2
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2016
Other Beilstein-Institut Open Science Activities