Search results

Search for "amides" in Full Text gives 456 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

New azodyrecins identified by a genome mining-directed reactivity-based screening

  • Atina Rizkiya Choirunnisa,
  • Kuga Arima,
  • Yo Abe,
  • Noritaka Kagaya,
  • Kei Kudo,
  • Hikaru Suenaga,
  • Junko Hashimoto,
  • Manabu Fujie,
  • Noriyuki Satoh,
  • Kazuo Shin-ya,
  • Kenichi Matsuda and
  • Toshiyuki Wakimoto

Beilstein J. Org. Chem. 2022, 18, 1017–1025, doi:10.3762/bjoc.18.102

Graphical Abstract
  • alcohols [24], methoxides [23][25][26], carboxylic acids [27], amides [28], ketones [29][30], an exo-olefin [31], and lactones [32]. Elucidating the mechanisms of structural diversification is essential when considering the synthesis of unnatural azoxides by a synthetic biology-based approach. However
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2022

First series of N-alkylamino peptoid homooligomers: solution phase synthesis and conformational investigation

  • Maxime Pypec,
  • Laurent Jouffret,
  • Claude Taillefumier and
  • Olivier Roy

Beilstein J. Org. Chem. 2022, 18, 845–854, doi:10.3762/bjoc.18.85

Graphical Abstract
  • -supported combinatorial approaches [11][12][13]. The most relevant comparison of peptoids with peptides is in fact with polyprolines due to the presence of backbone tertiary amide linkages, much more prone to cis/trans equilibria than secondary amides. Indeed, in proteins, cis-amide bonds are most often
  • through steric and electronic interactions involving peptoid amides and nearby side chains [17][18]. For example, N-substituted monomers bearing benzylic-type Nα-chiral groups including the phenylethyl [19][20][21], naphthylethyl [17][22][23][24], and triazolium groups [25][26][27], alkyl ammonium [28
  • ], tert-butyl/α,α-gem-dimethyl [29], or fluorinated groups [30] will preferentially form cis-amides (Figure 1A). Peptoid helicity modulation has also been investigated through specific placement of chiral and achiral monomers [31][32]. Comparatively fewer N-functional monomers capable of promoting trans
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2022

An isoxazole strategy for the synthesis of 4-oxo-1,4-dihydropyridine-3-carboxylates

  • Timur O. Zanakhov,
  • Ekaterina E. Galenko,
  • Mikhail S. Novikov and
  • Alexander F. Khlebnikov

Beilstein J. Org. Chem. 2022, 18, 738–745, doi:10.3762/bjoc.18.74

Graphical Abstract
  • due to their specific characteristics such as basicity, hydrogen bond forming ability, water solubility, and especially because of pyridine rings are bioisosteres of amines, amides, N-heterocyclic rings and benzene rings [1][2][3][4][5]. A special type of pyridine, the 4-pyridones, is also fairly well
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

A trustworthy mechanochemical route to isocyanides

  • Francesco Basoccu,
  • Federico Cuccu,
  • Federico Casti,
  • Rita Mocci,
  • Claudia Fattuoni and
  • Andrea Porcheddu

Beilstein J. Org. Chem. 2022, 18, 732–737, doi:10.3762/bjoc.18.73

Graphical Abstract
  • diverse electronic distribution between aliphatic and aromatic formamides. Concerning aromatic amides, the presence of electron-withdrawing (EWG) or electron-donating groups (EDG) further affect the tautomeric equilibrium, promoting or weakening the reactivity of the substrates. In this case, the yields
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2022

The asymmetric Henry reaction as synthetic tool for the preparation of the drugs linezolid and rivaroxaban

  • Martin Vrbický,
  • Karel Macek,
  • Jaroslav Pochobradský,
  • Jan Svoboda,
  • Miloš Sedlák and
  • Pavel Drabina

Beilstein J. Org. Chem. 2022, 18, 438–445, doi:10.3762/bjoc.18.46

Graphical Abstract
  • acylating reagent (1.0 equiv) in DCM and in the presence of TEA (1.1 equiv). The amides 27 and 28 were obtained with moderate yields (78% for 27 and 65% for 28) – values that are comparable to those previously described for the analogous ethyl derivatives [12][13]. Finally, the base-catalyzed intramolecular
  • transesterification (cyclization) led to the desired products 1 and 2. In the case of amides 27 and 28, the reaction conditions for the cyclization were slightly modified, i.e., the reaction time was prolonged to 24 h and the precipitated product was washed with hexane to remove traces of borneol. No changes in the
  • de were observed and the presence of the major S-enantiomer in the products 1 and 2 was confirmed by chiral HPLC analysis. Moreover, an enhancement of the abundance of the major epimer in the nitroaldols 22, 24, and 26 as well as the amides 27 and 28 was examined. Generally, epimers represent pairs
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2022

Cs2CO3-Promoted reaction of tertiary bromopropargylic alcohols and phenols in DMF: a novel approach to α-phenoxyketones

  • Ol'ga G. Volostnykh,
  • Olesya A. Shemyakina,
  • Anton V. Stepanov and
  • Igor' A. Ushakov

Beilstein J. Org. Chem. 2022, 18, 420–428, doi:10.3762/bjoc.18.44

Graphical Abstract
  • )pyrroles [15]. The CsF-promoted nucleophilic addition of isocyanides to bromoacetylenes furnished the functionalized bromovinyl amides followed by Pd-catalyzed formation of 5-iminopyrrolone [16]. Sequential nucleophilic addition/intramolecular cyclization of amidine with bromoacetylenes led to imidazoles
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2022

Site-selective reactions mediated by molecular containers

  • Rui Wang and
  • Yang Yu

Beilstein J. Org. Chem. 2022, 18, 309–324, doi:10.3762/bjoc.18.35

Graphical Abstract
  • guest molecule with an inwardly directed carboxylic acid group. The hydrogen bonds provided by a cyclic array of secondary amides around the rim stabilized the vase-like conformation of the complex (Figure 11b). Adding the epoxyalcohol 39 to the solution of I formed 5-membered ring product 40
PDF
Album
Review
Published 14 Mar 2022

New efficient synthesis of polysubstituted 3,4-dihydroquinazolines and 4H-3,1-benzothiazines through a Passerini/Staudinger/aza-Wittig/addition/nucleophilic substitution sequence

  • Long Zhao,
  • Mao-Lin Yang,
  • Min Liu and
  • Ming-Wu Ding

Beilstein J. Org. Chem. 2022, 18, 286–292, doi:10.3762/bjoc.18.32

Graphical Abstract
  • of their derivatives [12][13][14][15][16][17][18][19][20][21][22]. For example (Scheme 1), a one-pot Tf2O-mediated assembly of amides, amines, and ketones provided 3,4-dihydroquinazolines in good yields via successive triflic anhydride-mediated amide dehydration, ketimine addition, and Pictet
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2022

New advances in asymmetric organocatalysis

  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 240–242, doi:10.3762/bjoc.18.28

Graphical Abstract
  • by a review article devoted to aza-Michael reactions of amines and amides [17]. The evolution of the understanding of noncovalent activation modes led to the realization that anion-binding is a critical feature in many transformations. Halide anions are highly relevant and widely occurring within
PDF
Editorial
Published 28 Feb 2022

Synthesis and late stage modifications of Cyl derivatives

  • Phil Servatius and
  • Uli Kazmaier

Beilstein J. Org. Chem. 2022, 18, 174–181, doi:10.3762/bjoc.18.19

Graphical Abstract
  • in this first attempt, LDA was replaced with LHMDS and the reaction was allowed to warm to room temperature overnight (Table 1, entry 2). LHMDS is a weaker base than LDA and should not deprotonate α-substituted amino acid amides [53][54]. No full conversion was observed either and both yield and
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2022

Efficient synthesis of ethyl 2-(oxazolin-2-yl)alkanoates via ethoxycarbonylketene-induced electrophilic ring expansion of aziridines

  • Yelong Lei and
  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 70–76, doi:10.3762/bjoc.18.6

Graphical Abstract
  • alcohols [13][14][15] (Scheme 1a); (3) oxidative condensation of aldehydes with vicinal amino alcohols [16] (Scheme 1b); (4) cyclization of N-allylamides in the presence of electrophilic reagents or radical initiators or catalysts [17] (Scheme 1c); (5) direct synthesis from alkenes and amides or nitriles
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Recent advances and perspectives in ruthenium-catalyzed cyanation reactions

  • Thaipparambil Aneeja,
  • Cheriya Mukkolakkal Abdulla Afsina,
  • Padinjare Veetil Saranya and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 37–52, doi:10.3762/bjoc.18.4

Graphical Abstract
  • , carboxylic acids, tetrazoles, aldehydes, amidines, and amides [7][8][9][10][11]. This has been suitably transformed into structurally diverse and complex molecules. In 1927, Pongratz reported a method towards cyanation reactions [12]. From then, onwards, cyanation gained prime focus and achieved much
  • °C for 24 h (Scheme 13). Differently substituted aromatic amides with a range of functional groups such as fluoro, chloro, bromo, ester etc. were tolerated well in this method. The authors also performed the cyanation of heteroarenes at C-2 and C-3 positions and obtained excellent results. Various
  • reactivity was observed for 2° and 3° alkyltrifluoroborates under the optimized conditions. The authors were able to improve the product yield by increasing the amount of TsCN and avoiding the use of additive (Scheme 18). A wide variety of functional groups such as esters, cyano, amides, ethers, ketones
PDF
Album
Review
Published 04 Jan 2022

DABCO-promoted photocatalytic C–H functionalization of aldehydes

  • Bruno Maia da Silva Santos,
  • Mariana dos Santos Dupim,
  • Cauê Paula de Souza,
  • Thiago Messias Cardozo and
  • Fernanda Gadini Finelli

Beilstein J. Org. Chem. 2021, 17, 2959–2967, doi:10.3762/bjoc.17.205

Graphical Abstract
  • very attractive as HAT catalysts as demonstrated by previous works using secondary amides [8][9], sulfonamides [10] and quinuclidine [11][12], the latter being broadly explored in the literature for several functionalizations along with its derivatives [11][12][13][14][15][16][17][18][19][20]. DABCO is
PDF
Album
Supp Info
Letter
Published 21 Dec 2021

Unsaturated fatty acids and a prenylated tryptophan derivative from a rare actinomycete of the genus Couchioplanes

  • Shun Saito,
  • Kanji Indo,
  • Naoya Oku,
  • Hisayuki Komaki,
  • Masashi Kawasaki and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2021, 17, 2939–2949, doi:10.3762/bjoc.17.203

Graphical Abstract
  • /min. Peaks for (S)- and (R)-4' were detected at 11.3 min and 14.3 min, respectively, by monitoring the absorbance at 250 nm. Preparation of PGME amides 6a and 6b In a manner similar to a procedure from [21], to a solution of 6 (1.0 mg, 3.2 μmol) in dry N,N-dimethylformamide (100 μL) and N,N
  • products. Chiral phase HPLC analysis of methyl ester 4'. Italicized numbers indicate peak areas. COSY and key HMBC correlations observed for 6. ΔδH(S-R) values in ppm calculated from PGME amides 6a and 6b. Selected examples of the related compounds derived from the strains in the genus Streptomyces (a) and
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2021

A photochemical C=C cleavage process: toward access to backbone N-formyl peptides

  • Haopei Wang and
  • Zachary T. Ball

Beilstein J. Org. Chem. 2021, 17, 2932–2938, doi:10.3762/bjoc.17.202

Graphical Abstract
  • are relatively common, access to photo-responsive modifications of backbone N–H bonds is quite limited. This letter describes a new photocleavage pathway, affording N-formyl amides from vinylogous nitroaryl precursors under physiologically relevant conditions via a formal oxidative C=C cleavage. The N
  • pathways involving the intermediacy of 8. To provide additional support for this analysis, and to assess the stability of N-formyl amides formed in this reaction, we irradiated alkenyl amide 10, which contains a 2-phenylethyl substituent that allowed easier isolation of N-formyl 11 (Figure 4). After
  • then account for the isolation of the acetylated analogue 9. The photochemical pathway described here represents a formal oxidative olefin cleavage of vinylogous nitroaryl-modified amides and ethers. The pathway adds to the diversity of photochemical pathways known for 2-nitrophenyl systems, and the
PDF
Album
Supp Info
Letter
Published 15 Dec 2021

The PIFA-initiated oxidative cyclization of 2-(3-butenyl)quinazolin-4(3H)-ones – an efficient approach to 1-(hydroxymethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones

  • Alla I. Vaskevych,
  • Nataliia O. Savinchuk,
  • Ruslan I. Vaskevych,
  • Eduard B. Rusanov,
  • Oleksandr O. Grygorenko and
  • Mykhailo V. Vovk

Beilstein J. Org. Chem. 2021, 17, 2787–2794, doi:10.3762/bjoc.17.189

Graphical Abstract
  • includes the reaction of readily available anthranilic amides or hydrazides with pent-4-yn-1-ols or -carboxylic acids promoted by PdCl4 [15], Au(І) [16][17][18] or Cu(ІІ) [19] salts. In another version, the target compounds were obtained by iodine-catalyzed reaction of the aforementioned anthranilic acid
  • ][40] including from properly functionalized arenes and alkenes [41][42][43][44][45][46][47][48][49][50][51][52][53]. In the case of such substrates having oxygen-containing functional groups, PIFA attacked the double bond first [41][42][43]. With unsaturated amides or hydroxamates, oxidation of the
PDF
Album
Supp Info
Letter
Published 25 Nov 2021

Synthesis of new pyrazolo[1,2,3]triazines by cyclative cleavage of pyrazolyltriazenes

  • Nicolai Wippert,
  • Martin Nieger,
  • Claudine Herlan,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2021, 17, 2773–2780, doi:10.3762/bjoc.17.187

Graphical Abstract
  • characterization impossible. Therefore, the crude aminomethyl compounds 17a–g were directly converted to the corresponding amides 9a–i using different anhydrides or acid chlorides 11a–c. The resulting amides were stable and gained mediocre to good yields except for amides 9a and 9d (Table 2). The yield of 9d was
  • shown with compound 12g (R1 = -CH2CO2Et), being reduced to compound 17g (R1' = -(CH2)2OH) and acylated to 9i with R1'' = -(CH2)2OCOMe. The last step in the synthesis of the target compounds 5a–i included the cleavage of the triazene unit of the amides 9 with subsequent cyclization to the final pyrazolo
  • viability of HeLa cells, their regioisomers 13a and 13d–h decreased the viability at high micromolar concentrations. A slightly increased cytotoxicity of some derivatives of compound class 12 compared to 13 was observed for 12b and 12c. The amides 9 had no influence on the viability except for derivate 9b
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2021

Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2668–2679, doi:10.3762/bjoc.17.181

Graphical Abstract
  • secondary and tertiary amines, amides/lactams/carbamates, and nitrile. The test reactions were monitored by thin-layer chromatography (TLC) and, where deemed necessary, results were further verified by GC–MS. The reagents employed encompassed tritylium tetrafluoroborate [50], H2O2/HBr [42], ceric ammonium
  • /reagent combinations employed. The reaction of the secondary N-methylamine 2b with CBr4 [22] gave fluorenone (3) in 6% yield (determined by GC–MS), while tertiary amines, amides, and the γ-lactam 2e did not yield any. Formation of fluorenone (3) was also confirmed after applying a modified version of one
  • fluorenone (3) in 30% yield (determined by GC–MS). TLC analysis further revealed that fluorenone formation does not occur when treating tertiary amides 2h and 2i, γ-lactam derivative 2e, and carbamate 2j with this reagent (Table 1, entries 5, 8, 9, and 10). The reaction does, however, also work with tertiary
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2021

Ligand-dependent stereoselective Suzuki–Miyaura cross-coupling reactions of β-enamido triflates

  • Tomáš Chvojka,
  • Athanasios Markos,
  • Svatava Voltrová,
  • Radek Pohl and
  • Petr Beier

Beilstein J. Org. Chem. 2021, 17, 2657–2662, doi:10.3762/bjoc.17.179

Graphical Abstract
  • isomerization of N-allyl amides [20], but still possess drawbacks, especially for stereoselective synthesis of tri- and tetrasubstituted enamides. Recently, we have reported a triflic acid-mediated reaction of N-fluoroalkyl-1,2,3-triazoles leading to (Z)-β-enamido triflates [21] and Lewis acid-mediated reaction
PDF
Album
Supp Info
Letter
Published 29 Oct 2021

Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction

  • Dušan Đ. Škorić,
  • Olivera R. Klisurić,
  • Dimitar S. Jakimov,
  • Marija N. Sakač and
  • János J. Csanádi

Beilstein J. Org. Chem. 2021, 17, 2611–2620, doi:10.3762/bjoc.17.174

Graphical Abstract
  • [21], this variation of the reaction draws considerably less attention in comparison to the usage in the synthesis of amides or lactams. As presented in Figure 2, after initial formation of the azidohydrine by addition of hydrazoic acid to the ketone, the reaction can undergo two pathways. In the
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • overviews the literature published during the last 10 years concerning the asymmetric aza-MR of amines and amides catalysed by organocatalysts. Both types of the organocatalysts, i.e., those acting through non-covalent interactions and those working through covalent bond formation have been applied for the
  • aromatic amines, amides, imides, etc. require the use of an appropriate catalyst to undergo a Michael addition with a suitable acceptor. In view of this, chemists endeavoured to develop different types of catalysts, particularly the chiral catalysts to accomplish asymmetric aza-MRs. The development of
  • compounds; however, in order to comply with the requirements of a mini review, additions of amines and amides only will be included. 1. Non-covalent bonding organocatalytic aza-Michael reactions Organocatalysts catalyzing aza-MRs through mainly hydrogen bonding include cinchona alkaloids, squaramide
PDF
Album
Review
Published 18 Oct 2021

Silica gel and microwave-promoted synthesis of dihydropyrrolizines and tetrahydroindolizines from enaminones

  • Robin Klintworth,
  • Garreth L. Morgans,
  • Stefania M. Scalzullo,
  • Charles B. de Koning,
  • Willem A. L. van Otterlo and
  • Joseph P. Michael

Beilstein J. Org. Chem. 2021, 17, 2543–2552, doi:10.3762/bjoc.17.170

Graphical Abstract
  • vinylogous amides such as 11, however, we fortuitously found substituted 2,3-dihydro-1H-pyrrolizines 12 as unexpected products when intermediates 11 were exposed to acidic conditions, including treatment with acetic acid or even during chromatography on silica gel (Scheme 1) [18]. In these cyclizations the
  • synthetic utility, we surmised that replacing the aroyl component of the N-phenacyl substituent by electrophilic groups such as esters, amides or nitriles might yield 2,3-dihydro-1H-pyrrolizin-6-ones 13 or their hydroxypyrrole tautomers 13’. Our findings with N-(ethoxycarbonylmethyl)enaminones 14 are
  • N-phenacyl analogue 11 (Ar = Ar’ = Ph), the ester-containing enaminone 15a proved to be completely stable during chromatography on silica gel or upon dissolution in acetic acid at room temperature (conditions under which we had observed cyclization of vinylogous amides 11 [18]), and spontaneous
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • alkyl halide to generate a copperII–nucleophile complex C and an alkyl radical. The formation of the R–Nu bond might occur through an in-cage pathway involving complex C (Scheme 20). In addition to carbazoles, the authors further described the C–N coupling of organic halides 45 with amides [83] and
  • . Aerobic oxidative C(sp)–S coupling reaction. Copper-catalyzed alkylation of carbazoles with alkyl halides. C–N coupling of organic halides with amides and aliphatic amines. Copper-catalyzed C–X (N, S, O) bond formation reactions. Arylation of C(sp2)–H bonds of azoles. C–C cross-coupling of aryl halides
PDF
Album
Review
Published 12 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • , including bioactive molecules, were successfully installed to the ortho-position of ferrocene amides with high efficiency under mild conditions. A range of functionalized ferrocenes were compatible to give the aminated products in moderate to good yields. The gram-scale reaction was smoothly conducted and
  • amination occurred selectively at the ortho position to the N-quinolinyl amides with acceptable yields (3f–l). Notably, free alcohol was also compatible with this protocol, exclusively giving the mono-aminated product in 73% yield (3m) without the observation of any competitive alkoxylation product [38][57
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • discovered the synergistic combination of nickel catalysis and benzaldehyde for the arylation of C(sp3)–H bonds adjacent to nitrogen or sulfur in amides 6 and thioethers 28, respectively, under UVA light irradiation [68]. As shown in Scheme 16, both primary and secondary C(sp3)–H bonds of amides were
  • bonds are not limited to tertiary amines/amides. Secondary amides could also be arylated, as reported by Montgomery, Martin and co-workers [72]. The authors discovered that the combination of Ir[dF(CF3)ppy]2(dtbbpy)PF6, NiBr2·diglyme, 5,5’-dimethyl-2,2’-bipyridine (5,5’-diMe-bpy), and K3PO4 in dioxane
  • under irradiation of blue LEDs at ambient temperature afforded the desired α-arylation products 32 from secondary amides 31 and (hetero)aryl bromides 3 (Scheme 18) [72]. The method showed a broad substrate scope for both amides and aryl bromides. The authors also realized the enantioselective variant of
PDF
Album
Review
Published 31 Aug 2021
Other Beilstein-Institut Open Science Activities