Search results

Search for "diketone" in Full Text gives 136 result(s) in Beilstein Journal of Organic Chemistry.

Iodine-mediated synthesis of 3-acylbenzothiadiazine 1,1-dioxides

  • Long-Yi Xi,
  • Ruo-Yi Zhang,
  • Lei Shi,
  • Shan-Yong Chen and
  • Xiao-Qi Yu

Beilstein J. Org. Chem. 2016, 12, 1072–1078, doi:10.3762/bjoc.12.101

Graphical Abstract
  • alknyl group were subjected to this reaction, besides the formation of 3-acylbenzothiadiazine 1,1,-dioxide skeletons, the triple bond was further transformed into an ortho-diketone functionality (Scheme 4) [27][28][29]. 1,2-Dicarbonyl functionalities are one of the most important skeletons found in
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2016

Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins

  • Guozheng Huang,
  • Simon Schramm,
  • Jörg Heilmann,
  • David Biedermann,
  • Vladimír Křen and
  • Michael Decker

Beilstein J. Org. Chem. 2016, 12, 662–669, doi:10.3762/bjoc.12.66

Graphical Abstract
  • observed yielding several products (Scheme 3). Since the cyclic hemiacetal structure (of a diketone) represents the only functional difference to the other flavanonols employed, it is obviously unstable under the conditions used. Conclusion To our knowledge, this is the first semi-synthesis of optically
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2016

(Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

  • Giorgos Koutoulogenis,
  • Nikolaos Kaplaneris and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2016, 12, 462–495, doi:10.3762/bjoc.12.48

Graphical Abstract
  • good yield and stereoselectivity, given the high molecular complexity that is being achieved in one step (Scheme 64). The researchers suggested that diketone 204 and benzaldehyde 205 reacts through Knoevenagel condensation, to produce 2-arylidene-1,3-indanediones, which is subsequently attacked by the
PDF
Album
Review
Published 10 Mar 2016

Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions

  • Rajeev S. Menon,
  • Akkattu T. Biju and
  • Vijay Nair

Beilstein J. Org. Chem. 2016, 12, 444–461, doi:10.3762/bjoc.12.47

Graphical Abstract
  • for the asymmetric synthesis of functionalised cyclopentanones was disclosed in 2009 by Rovis. The chiral secondary amine 60 catalyzes the initial asymmetric Michael addition of an 1,3-diketone and an enal to afford a δ-ketoaldehyde 61. Subsequently, a cross-benzoin reaction of the latter promoted by
PDF
Album
Correction
Review
Published 09 Mar 2016

Synthesis of Xenia diterpenoids and related metabolites isolated from marine organisms

  • Tatjana Huber,
  • Lara Weisheit and
  • Thomas Magauer

Beilstein J. Org. Chem. 2015, 11, 2521–2539, doi:10.3762/bjoc.11.273

Graphical Abstract
  • coraxeniolide A (10) [12], starting from chiral (−)-Hajos–Parrish diketone (58) [39]. Based on Pfander's seminal work, the first total synthesis of a xenicane diterpenoid was then accomplished by Leumann in 2000 (Scheme 6) [40]. Starting from enantiopure (−)-Hajos–Parrish diketone (58), allylic alcohol 59 was
  • overall yield of 1.7%. The total syntheses of coraxeniolide A (10) and β-caryophyllene (22) reported by Corey [46] in 2008 are based on Pfander’s idea [24] to construct the cyclononene fragment from (−)-Hajos–Parrish diketone (58) [39] (Scheme 8). Chiral hydroxy dione 77 was synthesized according to a
  • oxolane bridge between C1 and C7. Hajos–Parrish diketone (107) [39] served as the starting material for the preparation of key intermediate 112. Selective reduction of the ketone and silylation of the resulting alcohol furnished enone 108. α-Carboxylation of the enone with magnesium methyl carbonate and a
PDF
Album
Review
Published 10 Dec 2015

C–H bond halogenation catalyzed or mediated by copper: an overview

  • Wenyan Hao and
  • Yunyun Liu

Beilstein J. Org. Chem. 2015, 11, 2132–2144, doi:10.3762/bjoc.11.230

Graphical Abstract
  • -workers [71] successfully achieved the selective mono-α-chlorination of β-keto esters/amides and 1,3-diketone 78 by employing an electrochemical synthesis via a catalysis by means of Cu(OTf)2. The synthesis of chlorinated carbonyl products 79 were acquired in a divided cell using aqueous HCl as chlorine
PDF
Album
Review
Published 09 Nov 2015

Investigation on the reactivity of α-azidochalcones with carboxylic acids: Formation of α-amido-1,3-diketones and highly substituted 2-(trifluoromethyl)oxazoles

  • Kandasamy Rajaguru,
  • Arumugam Mariappan,
  • Rajendran Suresh,
  • Periasamy Manivannan and
  • Shanmugam Muthusubramanian

Beilstein J. Org. Chem. 2015, 11, 2021–2028, doi:10.3762/bjoc.11.219

Graphical Abstract
  • -azidochalcone 1a (R1 = 4-Br, R2 = 4-OMe) with trifluoroacetic acid under microwave conditions [33] at 100 °C for 2 minutes to obtain diketone 3a (79%) as a solid without any side products (Scheme 1). The 1H NMR spectrum of 3a exhibits a methine proton doublet at 6.78 ppm. In the 13C NMR spectrum, two carbonyl
  • carbon signals and an amide carbon signal appear at 190.6, 188.8, and 165.1 ppm, respectively. In addition, a methine carbon signal appears at 60.4 ppm. The structural confirmation of α-amido-1,3-diketone 3e by one- and two-dimensional NMR spectroscopic data is depicted (see Supporting Information File 1
  • various substituted benzoic acids 2d–g as well and the resultant α-amido-1,3-diketones 3k–o are obtained in moderate to good yields (Figure 3). The mechanism for the formation of α-amido-1,3-diketone 3 is given in Scheme 2. Initially, by thermolysis, α-azidochalcone undergoes denitrogenative decomposition
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2015

Polythiophene and oligothiophene systems modified by TTF electroactive units for organic electronics

  • Alexander L. Kanibolotsky,
  • Neil J. Findlay and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2015, 11, 1749–1766, doi:10.3762/bjoc.11.191

Graphical Abstract
  • 4,6-diaryl substituted thienodithiole-2-ones, e.g., 4,6-di(thiophen-2-yl)thieno[3,4-d][1,3]dithiol-2-one (15c), construction of the thiophene directly onto the dithiole ring seems to be the only strategy, which can be readily achieved by reductive cyclisation of diketone 22 [60] (synthetic pathway B
  • reaction, is unstable and undergoes various rearrangments [68][69] in acidic conditions. Hence, it is preferably oxidised directly to the more stable diketone 25c without delay. The retrosynthetic scheme for the monomer units 28a,b with thieno-dithiino-dithiole type fusion is shown in Scheme 7. Similar to
  • the aforementioned synthetic pathway B, the strategy for the synthesis of 29 involves construction of the thiophene ring by cyclisation of diketone 30 (synthetic pathway C). The diketone 31 is constructed through the cycloaddition reaction of diacylethene 33 with oligomer 32, readily available by
PDF
Album
Review
Published 28 Sep 2015

Design and synthesis of hybrid cyclophanes containing thiophene and indole units via Grignard reaction, Fischer indolization and ring-closing metathesis as key steps

  • Sambasivarao Kotha,
  • Ajay Kumar Chinnam and
  • Mukesh E. Shirbhate

Beilstein J. Org. Chem. 2015, 11, 1514–1519, doi:10.3762/bjoc.11.165

Graphical Abstract
  • Vilsmeier–Haack reaction starting with the thiophene [33]. Later, diol 6 was oxidized with MnO2 [34] to deliver diketone 3. Our attempts to realize the RCM product 2 with dione 3 via a reaction with Grubbs’ catalyst failed to give the expected cyclized product. In most instances, we observed the degradation
  • , diketone 3 was subjected to a double Fischer indolization with 1-methyl-1-phenylhydrazine under conditions of a low melting reaction mixture to generate the bisindole derivative 5. It is interesting to note that conventional conditions (AcOH/HCl) for Fischer indolization were not successful with systems
  • of a mixture of L-(+)-tartaric acid/N,N′-dimethylurea (30:70) was heated to 70 °C to obtain a clear melt. To this melt, 2 mmol of N-methyl-N-phenylhydrazine and 1 mmol of diketone were added at 70 °C. After completion of the reaction (TLC monitoring by mini work up), the reaction mixture was quenched
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2015

Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

  • Sambasivarao Kotha,
  • Mohammad Saifuddin,
  • Rashid Ali and
  • Gaddamedi Sreevani

Beilstein J. Org. Chem. 2015, 11, 1367–1372, doi:10.3762/bjoc.11.147

Graphical Abstract
  • polymeric components. However, the home-made Grignard reagent at low concentration (0.1 M solution) exists mostly in the monomeric form. So, we speculate that the difference in the concentration may be responsible for the formation of diol 11 [49][50][51]. Alternatively, when the diketone was reacted with
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
  • reported the synthesis of [11](2,6)-pyridinophane (37), a normuscopyridine analogue, by an oxymercuration–oxidation strategy. The ketoolefin 34 was converted to the hydroxyketone 35 by treatment with Hg(OAc)2 and NaSH. Oxidation of the keto alcohol 35 gave diketone 36, which reacted with hydroxylamine
  • key building block for the synthesis of calix[4]arene. Here, α,ω-bis(p-methoxyphenyl)alkanes 264 were used as starting materials. Compound 264 was treated with acetic anhydride and AlCl3 in nitrobenzene and 1,1,2,2-tetrachloroethane to generate diketone 265 in 58–93% yield. Diketone 265 was then
PDF
Album
Review
Published 29 Jul 2015

Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps

  • Sambasivarao Kotha and
  • Ongolu Ravikumar

Beilstein J. Org. Chem. 2015, 11, 1259–1264, doi:10.3762/bjoc.11.140

Graphical Abstract
  • , and multiplet, respectively. Coupling constants (J) are reported in Hertz. Experimental procedures Synthesis of compound 4 Analogously as described in [2], to a stirred solution of diketone 3 (0.2 g, 0.83 mmol) in dry THF (10 mL) was added allylmagnesium bromide (4.2 mL, 1 M solution in ether) at 0 °C
  • , CDCl3) δ 135.5, 134.7, 134.4, 118.3, 73.4, 52.3, 52.3, 50.6, 49.2, 45.8, 45.7, 44.8 ppm; HRMS (Q–ToF) m/z: [M + Na]+ calcd for C17H20ONa, 347.1982; found, 347.1980. Synthesis of compound 9 Analogously as described in [2], to a stirred solution of diketone 8 (0.5 g, 1.8 mmol) in dry THF (10 mL) was added
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2015

Novel carbocationic rearrangements of 1-styrylpropargyl alcohols

  • Christine Basmadjian,
  • Fan Zhang and
  • Laurent Désaubry

Beilstein J. Org. Chem. 2015, 11, 1017–1022, doi:10.3762/bjoc.11.114

Graphical Abstract
  • . To determine whether the protection of the alkyne group was necessary for a rearrangement to take place, the reaction was carried out on compound 27. In the presence of perrhenic acid, 16% of the starting material was recovered along with 36% of diketone 28 (Scheme 6). No cyclization product was
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Bis(vinylenedithio)tetrathiafulvalene analogues of BEDT-TTF

  • Erdal Ertas,
  • İlknur Demirtas and
  • Turan Ozturk

Beilstein J. Org. Chem. 2015, 11, 403–415, doi:10.3762/bjoc.11.46

Graphical Abstract
  • molecules, obtained from 1,8-diketone ring closure reactions, and coupling reactions, published by our group. Review BVDT-TTF analogues from 1,8-diketones Bis(vinylenedithio)tetrathiafulvalene (BVDT-TTF) 4 (R = Ph, 4-CH3OC6H4, 4-BrC6H4, 4-CH3C6H4, 4-O2NC6H4, 2-thienyl) is a fully unsaturated analogue of
  • BEDT-TTF (ET) 3. It possesses a vinyl moiety at the peripheries in place of the ethylene group of ET. It can also be considered as a tetrathiafulvalene analogue having fused 1,4-dithiin rings as its peripheries. The synthesis was achieved through the reaction of a 1,8-diketone with Lawesson’s reagent
  • of synthesizing fused 1,4-dithiin and thiophene ring systems, possessing functional groups such as Ph 4-MeOC6H4 and 4-O2NC6H4 (Scheme 1) [46]. The synthesis involved treatment of the diketone 6, produced through the reaction of the readily available dianion 5 [52] with α-haloketones, with Lawesson’s
PDF
Album
Review
Published 27 Mar 2015

Attempts to prepare an all-carbon indigoid system

  • Şeref Yildizhan,
  • Henning Hopf and
  • Peter G. Jones

Beilstein J. Org. Chem. 2015, 11, 363–372, doi:10.3762/bjoc.11.42

Graphical Abstract
  • that caused all these preparative difficulties, we next decided to investigate the behavior of diketone 19, in which this conjugation is interrupted. Although its methylenation under Wittig conditions was again unsuccessful, the reaction with the Tebbe’s reagent provided a product. This, however, was
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2015

Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation

  • Yiyang Liu,
  • Marc Liniger,
  • Ryan M. McFadden,
  • Jenny L. Roizen,
  • Jacquie Malette,
  • Corey M. Reeves,
  • Douglas C. Behenna,
  • Masaki Seto,
  • Jimin Kim,
  • Justin T. Mohr,
  • Scott C. Virgil and
  • Brian M. Stoltz

Beilstein J. Org. Chem. 2014, 10, 2501–2512, doi:10.3762/bjoc.10.261

Graphical Abstract
  • was crossed with methyl vinyl ketone in 62% yield [34]. Reduction of enone 34 was achieved in the presence of Pd/C with H2 in EtOAc to furnish diketone 35 [34]. Chemoselective Wittig mono-olefination of 35 provided ω-enone (−)-32, spectroscopically identical to the material in Danishefsky’s racemic
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2014

(CF3CO)2O/CF3SO3H-mediated synthesis of 1,3-diketones from carboxylic acids and aromatic ketones

  • JungKeun Kim,
  • Elvira Shokova,
  • Victor Tafeenko and
  • Vladimir Kovalev

Beilstein J. Org. Chem. 2014, 10, 2270–2278, doi:10.3762/bjoc.10.236

Graphical Abstract
  • JungKeun Kim Elvira Shokova Victor Tafeenko Vladimir Kovalev Laboratory of Macrocyclic Receptors, Department of Chemistry, Moscow State University, Lenin’s Hills, Moscow 119991, Russia 10.3762/bjoc.10.236 Abstract A very simple and convenient reaction for 1,3-diketone preparation from carboxylic
  • the most important class of organic compounds, since they are applied as key structural blocks in organic syntheses, exhibit different kinds of biological activities, and display a broad range of ionophoric properties [1][2][3]. The method most frequently used for 1,3-diketone synthesis is the Claisen
  • (2а), which was initially formed as the result of an intramolecular cyclization of 1a, underwent a further acylation with the formation of 1,3-diketone 3a. In contrast, γ-phenylbutanoic acid (1c) was quantitatively transformed only to the tetralone 2с (Table 1, entries 10 and 11). The acid-catalyzed
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2014

Syntheses of fluorooxindole and 2-fluoro-2-arylacetic acid derivatives from diethyl 2-fluoromalonate ester

  • Antal Harsanyi,
  • Graham Sandford,
  • Dmitri S. Yufit and
  • Judith A.K. Howard

Beilstein J. Org. Chem. 2014, 10, 1213–1219, doi:10.3762/bjoc.10.119

Graphical Abstract
  • use of 1,3-diketone, 1,3-ketoester and 1,3-diester derivatives in retrosynthetic planning is widespread in general organic chemistry and numerous terpenes, heterocycles and steroids originate from such simple yet synthetically versatile substrates [16][17][18][19]. In contrast, despite the
PDF
Album
Supp Info
Video
Full Research Paper
Published 22 May 2014

Self-assembly of metallosupramolecular rhombi from chiral concave 9,9’-spirobifluorene-derived bis(pyridine) ligands

  • Rainer Hovorka,
  • Sophie Hytteballe,
  • Torsten Piehler,
  • Georg Meyer-Eppler,
  • Filip Topić,
  • Kari Rissanen,
  • Marianne Engeser and
  • Arne Lützen

Beilstein J. Org. Chem. 2014, 10, 432–441, doi:10.3762/bjoc.10.40

Graphical Abstract
  • subjected to an acid-mediated condensation to give the 9,9’-spirobifluorene. Friedel–Crafts acylation with acetyl chloride gave rise to the racemic 2,2’-diketone which was transformed to the racemic diester in a Baeyer–Villiger oxidation. Saponification of the ester functions then afforded (rac)-1. One part
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2014

Recent applications of the divinylcyclopropane–cycloheptadiene rearrangement in organic synthesis

  • Sebastian Krüger and
  • Tanja Gaich

Beilstein J. Org. Chem. 2014, 10, 163–193, doi:10.3762/bjoc.10.14

Graphical Abstract
  • , which underwent DVCPR under these conditions to give tetracycle 244 in 50% yield. Matsubara and coworkers [202] investigated the formation of cyclohepta-1,3-diones from 1,2-diketone starting materials. Treatment of 245 with bis(iodozincio)methane resulted in the formation of cis-divinylcyclopropane 246
PDF
Album
Review
Published 16 Jan 2014

Novel supramolecular affinity materials based on (−)-isosteviol as molecular templates

  • Christina Lohoelter,
  • Malte Brutschy,
  • Daniel Lubczyk and
  • Siegfried R. Waldvogel

Beilstein J. Org. Chem. 2013, 9, 2821–2833, doi:10.3762/bjoc.9.317

Graphical Abstract
  • , (−)-isosteviol can be oxidized under Riley conditions (Table 1, reaction conditions a: selenium dioxide/xylene) [62][63] to give the corresponding diketone 9 [66]. Subsequent esterification with 3,5-dinitrobenzylic chloride under basic conditions (Table 1, reaction conditions b for R = DNB) [67] proceeds with a
  • carried out (Scheme 4). Again, both paths A and B lead to the formation of the desired PNB protected diketone 11. Esterification was achieved by reaction with 4-nitrobenzyl chloride and cesium carbonate in DMF (Table 1, reaction conditions b for R = PNB) [68]. Both sequences A and B proceed with similar
  • ester substituent, the detour via protecting groups in the synthesis of alkylated triptycene 17 was subsequently avoided. Therefore, alkylated diketone 18 was synthesized, starting from (−)-isosteviol (Scheme 8). Since alkenes are known to participate in Riley oxidations as well, rendering allylic
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2013

Synthesis of indole-based propellane derivatives via Weiss–Cook condensation, Fischer indole cyclization, and ring-closing metathesis as key steps

  • Sambasivarao Kotha,
  • Ajay Kumar Chinnam and
  • Arti Tiwari

Beilstein J. Org. Chem. 2013, 9, 2709–2714, doi:10.3762/bjoc.9.307

Graphical Abstract
  • diversification: (i) various aryl and heteroaryl fused indole derivatives can be assembled by choosing an appropriate hydrazine derivative, (ii) during the alkylation of diketone 2 [43] various unsaturated alkenyl fragments may be incorporated either in a symmetrical or in an unsymmetrical manner, (iii) various
  • [3.3.0]octane-3,7-dione (1) [44][45][46][47][48][49][50] was subjected to twofold Fischer indole cyclization to generate the diindole derivative 6 by using 1-methy-1-phenylhydrazine (5) under HCl/EtOH reflux conditions. Next, SeO2 oxidation of 6 in 1,4-dioxane under reflux gave the known diketone 2
  • (Scheme 1). Later, diketone 2 was treated with allyl bromide in the presence of NaH to afford the mono-allylated product 7 in 65% yield. The allyl group attacks the molecule from the sterically less hindered convex side. Since the alkylation step can be performed stepwise, symmetrical as well as
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2013

Ambient gold-catalyzed O-vinylation of cyclic 1,3-diketone: A vinyl ether synthesis

  • Yumeng Xi,
  • Boliang Dong and
  • Xiaodong Shi

Beilstein J. Org. Chem. 2013, 9, 2537–2543, doi:10.3762/bjoc.9.288

Graphical Abstract
  • access to various vinyl ethers. A catalytic amount of copper triflate was identified as the significant additive in promoting this transformation. Both aromatic and aliphatic alkynes are suitable substrates with good to excellent yields. Keywords: alkyne; copper salt; diketone; gold catalysis; vinyl
  • different binding ability toward water activation, we wondered whether the intermolecular O-addition could be achieved through ligand tuning. In this report, we focus on the cyclic 1,3-diketone nucleophiles due to A) the transformation is challenging and has never been reported in the past, B) vinyl ether
  • . However, the corresponding TA-Au complexes indicated significantly improved selectivity towards the diketone addition over the hydration (Table 1, entry 4). Finally, the application of the XPhos ligand and the corresponding TA-Au complex largely promoted this reaction, giving 3a in 85% yield with 12
PDF
Album
Supp Info
Letter
Published 18 Nov 2013

An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles

  • Marcus Baumann and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265

Graphical Abstract
  • substituted pyridines is the direct condensation of ammonia (or hydroxylamine) with a corresponding 1,5-diketone. Alternatively, ammonia (or an ammonium salt), an aldehyde and two equivalents of a 1,3-dicarbonyl compound can react via a classical Hantzsch dihydropyridine synthesis. Similarly unsymmetrical
  • to the thiazolidinedione moiety as experienced using other reducing systems. As an aside the synthesis of 2-pyridones (i.e. 1.42) can be achieved via a number of methods. For example the classical Guareschi–Thorpe condensation in which cyanoacetamide reacts with a 1,3-diketone delivers highly
PDF
Album
Review
Published 30 Oct 2013

The chemistry of isoindole natural products

  • Klaus Speck and
  • Thomas Magauer

Beilstein J. Org. Chem. 2013, 9, 2048–2078, doi:10.3762/bjoc.9.243

Graphical Abstract
PDF
Album
Video
Review
Published 10 Oct 2013
Other Beilstein-Institut Open Science Activities